Advertisement

Doklady Chemistry

, Volume 483, Issue 1, pp 275–278 | Cite as

Composite Materials in the Zirconia–Tricalcium Phosphate System for Bone Implants

  • V. V. Smirnov
  • M. A. GoldbergEmail author
  • A. I. Krylov
  • S. V. Smirnov
  • O. S. Antonova
  • Yu. B. Tyut’kova
  • A. A. Konovalov
  • L. I. Podzorova
  • S. M. Barinov
CHEMICAL TECHNOLOGY
  • 17 Downloads

Abstract

Based on tricalcium phosphate, new high-strength composite materials were synthesized, in which the strengthening phase was ZrO2. To reduce the sintering temperature and obtain a fine crystalline structure, a special additive based on sodium silicate was developed, which favored the formation of low-temperature melts. It was studied how the ratio between the initial components and the sintering conditions affect the phase composition, microstructure, and mechanical properties of the obtained composite materials. By improving technology and optimizing composition, strong ZrO2-rich composites were produced in the tetragonal modification with a low sintering temperature of 1250–1350°C and a flexural strength to 260 MPa. The composites had microstructure with tricalcium phosphate and ZrO2 crystal sizes to 500 nm and to 5 μm, respectively. Such materials can be used in medicine for manufacturing bone implants capable of withstanding physiological loads.

Notes

ACKNOWLEDGMENTS

This work was supported by the Council for Grants of the President of the Russian Federation for State Support of Young Russian Scientists and State Support of Leading Scientific Schools of the Russian Federation (grant no. MK–5661.2018.8, fellowship no. SP–3724.2018.4).

REFERENCES

  1. 1.
    Manicone, P.F., Iommetti, P.R., and Raffaelli, L., J. Dent., 2007, vol. 35, no. 11, pp. 819–8262.Google Scholar
  2. 2.
    Afzal, A., Mater. Expr., 2014, vol. 4, no. 1, pp. 1–12.CrossRefGoogle Scholar
  3. 3.
    Kong, Y.M., Bae, C.J., Lee, S.H., Kim, H.W., and Kim, H.E., Biomaterials, 2005, vol. 26, no. 5, pp. 509–517.CrossRefGoogle Scholar
  4. 4.
    Yu, W., Wang, X., Zhao, J., Tang, Q., Wang, M., and Ning, X., Ceram. Int., 2015, vol. 41, no. 9, pp. 10600–10606.CrossRefGoogle Scholar
  5. 5.
    Evis, Z., Ceram. Int., 2007, vol. 33, no. 6, pp. 987–991.CrossRefGoogle Scholar
  6. 6.
    Leong, C.H., Lim, K.F., Muchtar, A., and Yahaya, N., Adv. Mater. Res., 2013, vol. 750, pp. 1664–1668.CrossRefGoogle Scholar
  7. 7.
    Goldberg, M.A., Smirnov, V.V., Protsenko, P.V., Antonova, O.S., Smirnov, S.V., Fomina, A.A., Konovalov, A.A., Leonov, A.V., Ashmarin, A.A., and Barinov, S.M., Ceram. Int., 2017 vol. 43, no. 16, pp. 13881–13884.CrossRefGoogle Scholar
  8. 8.
    McHale, A.E. and Roth, R.S., Phase Equilibrium Diagrams, Westerville (OH): Am. Ceram. Soc., 1996, vol. XII, diagrams 9898 and 9899.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Smirnov
    • 1
  • M. A. Goldberg
    • 1
  • A. I. Krylov
    • 1
  • S. V. Smirnov
    • 1
  • O. S. Antonova
    • 1
    • 2
  • Yu. B. Tyut’kova
    • 1
  • A. A. Konovalov
    • 1
  • L. I. Podzorova
    • 1
  • S. M. Barinov
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.Blagonravov Institute of Machine Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations