Doklady Chemistry

, Volume 476, Issue 1, pp 219–222 | Cite as

Physicochemical efficiency of electroflotation of finely divided carbon nanomaterial from aqueous solutions containing surfactants

  • V. P. Meshalkin
  • V. A. Kolesnikov
  • A. V. Desyatov
  • A. D. Milyutina
  • A. V. KolesnikovEmail author
Chemical Technology


Electroflotation of finely divided carbon nanomaterials—carbon nanoflakes (CNFls)—from aqueous solutions with a wide pH range of 3.0 to 11.0 in the presence of surfactants of various types was studied experimentally. The efficiency indices were determined for the electroflotation of CNFls from CNFls–surfactant–Na2SO4 solutions in the presence of a coagulant (iron(III) chloride) and flocculants, which enabled one to find the optimal conditions for electroflotation of carbon nanomaterials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Younis, A.V. and Kolesnikov, A.V., Desyatov, Am. J. Anal. Chem., 2014, vol. 5, no. 17, pp. 1273–1284.CrossRefGoogle Scholar
  2. 2.
    Reverberi, A.P., Kuznetsov, N.T., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2016, vol. 50, no. 1, pp. 63–71.CrossRefGoogle Scholar
  3. 3.
    Kafarov, V.V. and Meshalkin, V.P., Analiz i sintez khimiko-tekhnologicheskikh sistem (Analysis and Synthesis of Technological Systems), Moscow: Khimiya, 1991.Google Scholar
  4. 4.
    Sevast'yanov, V.G., Kolesnikov, V.A., Desyatov, A.V., and Kolesnikov, A.V., Steklo Keram., 2014, no. 12, pp. 24–27.Google Scholar
  5. 5.
    Luzgarev, A.S., Luzgarev, S.V., and Tkachenko, T.B., Energeticheskaya Bezopasnost’ Rossii. Novye pokhody k razvitiyu ugol’noi promyshlennosti (Energy Security of Russia. New Approaches to the Development of Coal Industry), Kemerovo, 2014, p. 281.Google Scholar
  6. 6.
    Sarkisov, P.D., Orlova, L.A., Klimenko, N.N., and Dulin, V.Yu., Izv. VolgGTU, 2011, vol. 8, no. 2, pp. 155–159.Google Scholar
  7. 7.
    Zaikov, G.E., Oxid. Commun., 2012, vol. 35, no. 2, pp. 438–451.Google Scholar
  8. 8.
    Morozov, A.N., Kryukov, A.Yu., Kolesnikov, A.V., and Desyatov, A.V., Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 1, pp. 63–65.Google Scholar
  9. 9.
    Brodskii, V.A., Kolesnikov, V.A., and Il’in, V.I., Teor. Osnovy Khim. Tekhnol., 2015, vol. 49, no. 2, p. 144.Google Scholar
  10. 10.
    Meshalkin, V.P., Kolesnikov, A.V., Kovalenko, V.S., and Gaidukov, E.N., Dokl. Chem., 2016, vol. 467, part 1, pp. 105–107.Google Scholar
  11. 11.
    Milyutina, A.D., Kolesnikov, V.A., and Kolesnikov, A.V., Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 3, pp. 19–21.Google Scholar
  12. 12.
    Milyutina, A.D., Kolesnikov, V.A., and Kolesnikov, A.V., Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 3, pp. 22–23.Google Scholar
  13. 13.
    Vu, T.P., Sep. Purif. Technol., 2014, vol. 134, pp. 196–203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. P. Meshalkin
    • 1
    • 2
  • V. A. Kolesnikov
    • 1
  • A. V. Desyatov
    • 1
  • A. D. Milyutina
    • 1
  • A. V. Kolesnikov
    • 1
    Email author
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations