Doklady Chemistry

, Volume 471, Issue 2, pp 356–359 | Cite as

The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite

  • V. I. Popkov
  • O. V. Almjasheva
  • V. V. Panchuk
  • V. G. Semenov
  • V. V. Gusarov
Chemistry

Abstract

Formation of hexagonal and orthorhombic YFeO3 nanocrystals from an amorphous phase upon heat treatment of glycine–nitrate combustion products has been studied. The initial X-ray amorphous precursor has been shown to have pre-nucleus species of two types. Rapid formation of h-YFeO3 nanocrystals is explained by the presence of structurally similar pre-nucleus species in the precursor, while o-YFeO3 nanocrystals are formed much more slowly through recrystallization of the hexagonal and amorphous yttrium orthoferrite phases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, L., Zhang, L., Wang, X., et al., J. Solid State Chem., 2004, vol. 177, no. 10, pp. 3666–3674.CrossRefGoogle Scholar
  2. 2.
    Nair, S.R., Purohit, R.D., Tyagi, A.K., et al., Mater. Res. Bull., 2008, vol. 43, no. 6, pp. 1573–1582.CrossRefGoogle Scholar
  3. 3.
    Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., et al., Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384.CrossRefGoogle Scholar
  4. 4.
    Komlev, A.A. and Vilezhaninov, E.F., Zh. Prikl. Khim., 2013, vol. 86, no. 9, pp. 1373–1380.Google Scholar
  5. 5.
    Popkov, V.I. and Al’myasheva, O.V., Zh. Prikl. Khim., 2014, vol. 87, no. 2, pp. 185–189.Google Scholar
  6. 6.
    Gusarov, V.V., Z. Obshch. Khim., 1997, vol. 67, no. 12, pp. 1959–1964.Google Scholar
  7. 7.
    Tugova, E.A. and Karpov, O.N., Nanosystems: Phys., Chem., Math., 2014, vol. 5, no. 6, pp. 854–860.Google Scholar
  8. 8.
    Berbenni, V., Milanese, C., Bruni, G., et al., Thermochim. Acta, 2011, vol. 521, pp. 218–223.CrossRefGoogle Scholar
  9. 9.
    Vasilevskaya, A., Almjasheva, O.V., and Gusarov, V.V., J. Nanopart. Res., 2016, vol. 18, pp. 1–17.CrossRefGoogle Scholar
  10. 10.
    Popkov, V.I., Al’myasheva, O.V., and Gusarov, V.V., Zh. Prikl. Khim., 2014, vol. 87, no. 10, pp. 1416–1420.Google Scholar
  11. 11.
    Nguen, A.T., Mittova, I.Ya., and Al’myasheva, O.V., Zh. Prikl. Khim., 2009, vol. 82, no. 11, pp. S. 1766–1769.Google Scholar
  12. 12.
    Popkov, V.I., Almjasheva, O.V., and Nevedomskiy, V.N., Nanosystems: Phys., Chem., Math., 2015, vol. 6, no. 6, pp. 866–874.Google Scholar
  13. 13.
    Leoni, M., Confente, T., and Scardi, P., Z. Kristallogr. Suppl., 2006, vol. 23, pp. 249–254.CrossRefGoogle Scholar
  14. 14.
    Mathur, S., Veith, M., Rapalaviciute, R., et al., Chem. Mater., 2004, vol. 16, no. 10, pp. 1906–1913.CrossRefGoogle Scholar
  15. 15.
    Downie, L.J., Goff, R.J., Kochelmann, W., et al., J. Solid State Chem., 2012, vol. 190, no. 3, pp. 52–60.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. I. Popkov
    • 1
    • 2
  • O. V. Almjasheva
    • 1
    • 3
  • V. V. Panchuk
    • 4
  • V. G. Semenov
    • 4
  • V. V. Gusarov
    • 1
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  3. 3.St. Petersburg State Electrotechnical University “LETI,”St. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations