Doklady Biological Sciences

, Volume 482, Issue 1, pp 198–201 | Cite as

The Natural Abundance of Heavy Nitrogen Isotope (15N) in Plants Increases near a Large Copper Smelter

  • O. E. ChashchinaEmail author
  • A. A. Chibilev
  • D. V. Veselkin
  • N. B. Kuyantseva
  • A. G. Mumber
General Biology


The ratio of stable isotopes of nitrogen (15N and 14N) has been assessed in leaves of the forest plants from different functional groups (with ectomycorrhiza, ericoid, and arbuscular mycorrhiza; in a nitrogen-fixing symbiosis) under the conditions of strong transformation of ecosystems by the Karabashsky Copper-Smelting Plant effluents in the Southern Urals. The abundance of 15N in the plants generally increases in polluted habitats. The abundance of the heavy isotope 15N increases significantly with pollution in ericaceous dwarf shrubs (by 3.3‰) and herbs with arbuscular mycorrhizae (by 2.8‰). This indicates a strong alteration in conditions or modes of plant mineral nutrition under the influence of heavy metal pollution of forest ecosystems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Högberg, P., New Phytol., 1997, vol. 137, pp. 179–203.CrossRefGoogle Scholar
  2. 2.
    Dawson, T.E., Mambelli, S., Plamboeck, A.H., et al., Annu. Rev. Ecol. S, 2002, vol. 33, pp. 507–559.CrossRefGoogle Scholar
  3. 3.
    Makarov, M.I., Pochvovedenie, 2009, no. 12, pp. 1432–1445.Google Scholar
  4. 4.
    Craine, J.M., Brookshire, E.N.J., Cramer, M.D., et al., Plant Soil, 2015, vol. 369, pp. 1–26.CrossRefGoogle Scholar
  5. 5.
    Martinelli, L.A., Piccolo, M.C., Townsend, A.R., et al., Biogeochemistry, 1999, vol. 46, pp. 45–65.Google Scholar
  6. 6.
    Robinson, D., Trends Ecol. Evol., 2001, vol. 16, pp. 153–162.CrossRefPubMedGoogle Scholar
  7. 7.
    Gebauer, G., Giesemann, A., Schulze, E.D., et al., Plant Soil, 1994, vol. 164, no. 2, pp. 267–281.CrossRefGoogle Scholar
  8. 8.
    Korontzi, S., Macko, S.A., Anderson, I.C., et al., Global Biogeochem. Cy, 2000, vol. 14, no. 1, pp. 177–188.CrossRefGoogle Scholar
  9. 9.
    Pearson, J., Wells, D.M., Seller, K.J., et al., New Phytol., 2000, vol. 147, no. 2, pp. 317–326.CrossRefGoogle Scholar
  10. 10.
    Hofmann, D., Jung, K., Bender, J., et al., J. Mass Spectrom., 1997, vol. 32, no. 8, pp. 855–863.CrossRefGoogle Scholar
  11. 11.
    Kozlov, M.V., Zvereva, E.L., and Zverev, V.E., Impacts of Point Polluters on Terrestrial Biota, Dordrecht: Springer, 2009.CrossRefGoogle Scholar
  12. 12.
    Koroteeva, E.V., Veselkin, D.V., Kuyantseva, N.B., Mumber, A.G., and Chashchina, O.E., Agrokhimiya, 2015, no. 3, pp. 88–96.Google Scholar
  13. 13.
    Veselkin, D.V., Ekologiya, 2002, no. 4, pp. 250–253.Google Scholar
  14. 14.
    Betekhtina, A.A. and Veselkin, D.V., Ekologiya, 2011, no. 3, pp. 176–183.Google Scholar
  15. 15.
    Veselkin, D.V., Sib. Ekol. Zhurn., 2005, no. 4, pp. 753–761.Google Scholar
  16. 16.
    Menyailo, O.V. and Khangeit, B.A., DAN, 2006, vol. 408, no. 5, pp. 671–674.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. E. Chashchina
    • 1
    Email author
  • A. A. Chibilev
    • 2
  • D. V. Veselkin
    • 3
  • N. B. Kuyantseva
    • 1
    • 4
  • A. G. Mumber
    • 1
  1. 1.Ilmen State Reserve, Ural BranchRussian Academy of SciencesChelyabinskRussia
  2. 2.Steppe Institute, Ural BranchRussian Academy of SciencesOrenburgRussia
  3. 3.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  4. 4.South Ural State UniversityChelyabinskRussia

Personalised recommendations