Advertisement

Differential Equations

, Volume 55, Issue 10, pp 1397–1406 | Cite as

Input—Output Systems and Bäcklund Transformations

  • V. N. ChetverikovEmail author
Control Theory
  • 9 Downloads

Abstract

The concept of input-output system is stated in the geometric language of infinite jets. It is proved that finite-dimensional input-output mappings are Bäcklund transformations. This assertion is generalized to infinite-dimensional input-output systems. Observability conditions are derived as a consequence of the geometric interpretation introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 19-07-00817 and 18-07-00269.

References

  1. 1.
    Pomet, J.-B., A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, Jakubczyk, B., Respondek, W., and Rzezuchowski, T., Eds., Warsaw, 1995, pp. 319–339.Google Scholar
  2. 2.
    Fliess, M., Lévine, J., Martin, Ph., and Rouchon, P., A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Autom. Control, 1999, vol. 44, no. 5, pp. 922–937.CrossRefGoogle Scholar
  3. 3.
    Chetverikov, V.N., Flatness of dynamically linearizable systems, Differ. Equations, 2004, vol. 40, no. 12, pp. 1747–1756.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belinskaya, Yu.S. and Chetverikov, V.N., Symmetries, coverings, and decomposition of systems and trajectory generation, Differ. Equations, 2016, vol. 52, no. 11, pp. 1423–1435.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conte, G., Moog, C.H., and Perdon, A.M., Algebraic Methods for Nonlinear Control Systems, London: Springer, 2007.CrossRefGoogle Scholar
  6. 6.
    Bocharov, A.V., Verbovetskii, A.M., Vinogradov, A.M., et al., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki (Symmetries and Conservation Laws of Equations of Mathematical Physics), Vinogradov, A.M. and Krasil’shchik, I.S., Eds., Moscow: Faktorial, 2005.Google Scholar
  7. 7.
    Chetverikov, V.N. and Kudryavtsev, A.G., A method for computing symmetries and conservation laws of integro-differential equations, Acta Appl. Math., 1995, vol. 41, pp. 45–56.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hale, J., Theory of Functional Differential Equations, New York-Heidelberg-Berlin: Springer, 1977. Translated under the title Teoriya funktsional’no-differentsial’nykh uravnenii, Moscow: Mir, 1984.CrossRefGoogle Scholar
  9. 9.
    Marx, S. and Cerpa, E., Output feedback control of the linear Korteweg-de Vries equation, in 53rd IEEE Conf. Decis. Control, Los Angeles, 2014, pp. 2083–2087.Google Scholar
  10. 10.
    Hasan, A., Output-feedback stabilization of the Korteweg-de Vries equation, Mediterr. Conf. Control Autom., Athens, Greece, 2016, pp. 871–876.Google Scholar
  11. 11.
    Chetverikov, V.N., Flat control systems with delay, Differ. Equations, 2005, vol. 41, no. 12, pp. 1743–1750.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hermann, R. and Krener, A.J., Nonlinear controllability and observability, IEEE Trans. Autom. Control, 1977, vol. 22, no. 5, pp. 728–740.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Marvan, M., Some local properties of Bäcklund transformations, Acta Appl. Math., 1998, vol. 54, pp. 1–25.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations