Advertisement

Differential Equations

, Volume 55, Issue 2, pp 274–278 | Cite as

On a Problem Posed by Vladimir Ivanovich Zubov

  • A. I. PerovEmail author
  • V. K. Kaverina
Short Communications
  • 8 Downloads

Abstract

We obtain sufficient conditions for a globally asymptotically stable autonomous system of differential equations in ℝn to have an ω-periodic solution under an arbitrary ω-periodic perturbation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zubov, V.I., Teoriya kolebanii (Oscillation Theory), Moscow: Vysshaya Shkola, 1979.Google Scholar
  2. 2.
    Krasovskii, N.N., Nekotorye zadachi ustoichivosti dvizheniya (Some Problems of the Theory of Motion Stability), Moscow: Gos. Izd. Fiz. Mat. Lit., 1959.Google Scholar
  3. 3.
    Krasnosel’skii, M.A., Operator sdviga po traektoriyam differentsial’nykh uravnenii (Operator of Shift along Trajectories of Differential Equations), Moscow: Nauka, 1960.Google Scholar
  4. 4.
    Zvyagin, V.G., Vvedenie v topologicheskie metody analiza (Introduction to Topological Methods of Analysis), Voronezh: Izdat. Dom VGU, 2014.Google Scholar
  5. 5.
    Ortega, J. and Rheinboldt, W., Iterative Solutions of Nonlinear Equations in Several Variables, New York: McGraw-Hill, 1970. Translated under the title Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Moscow: Mir, 1979.zbMATHGoogle Scholar
  6. 6.
    Perov, A.I. and Evchenko, V.K., Metod napravlyayushchikh funktsii (Method of Directing Functions), Voronezh: IPTs VGU, 2012.Google Scholar
  7. 7.
    Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1950.Google Scholar
  8. 8.
    Reissig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlineare Differentialgleichungen, Rome: Edizioni Cremonese, 1964. Translated under the title Kachestvennaya teoriya differentsial’nykh uravnenii, Moscow: Nauka, 1970.Google Scholar
  9. 9.
    Sansone, G. Equazioni Differenziali nel campo reale, Bologna: Zanichelli, 1949. Translated under the title Obyknovennye differentsial’nye uravneniya, Moscow: Inostrannaya Literatura, 1954, Vol. 2.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations