Advertisement

Differential Equations

, Volume 55, Issue 2, pp 270–273 | Cite as

Generalized d’Alembert Formula for the Wave Equation with Discontinuous Coefficients

  • D. S. AnikonovEmail author
  • D. S. Konovalova
Short Communications
  • 13 Downloads

Abstract

We consider a second-order differential equation that is a mathematical model of transverse vibrations of a string or longitudinal vibrations of an elastic rod. The coefficients of the second derivatives are piecewise constant functions. An existence and uniqueness theorem is proved and an explicit formula is given for the generalized solution of the Cauchy problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petrova, G. and Popov, B., Linear transport equations with discontinuous coefficients, Comm. Partial Differential Equations, 1999, vol. 24, nos. 9–10, pp. 1849–1873.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouchut, F. and Jame, F., One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal., 1998, vol. 32, no. 7, pp. 891–933.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kulikovskii, A.G., Sveshnikova, E.I., and Chugainova, A.P., Matematicheskie metody izucheniya razryvnykh nelineinykh giperbolicheskikh sistem uravnenii (Mathematical Methods for Studying Discontinuous Nonlinear Hyperbolic Systems of Equations), Moscow: Mat. Inst. Steklov. Ross. Akad. Nauk, 2010, no. 16.Google Scholar
  4. 4.
    Tadmor, E., Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal., 1991, vol. 28, pp. 891–906.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kalitkin, N.N., Chislennye metody (Numerical Methods), Moscow: Nauka, 1978.Google Scholar
  6. 6.
    Gel’fand, I.M., Some problems of the theory of quasilinear equations, Uspekhi Mat. Nauk, 1959, vol. 14, no. 2 (86), pp. 87–158.Google Scholar
  7. 7.
    Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with Discontinuous Right-Hand Side), Moscow: Nauka, 1985.zbMATHGoogle Scholar
  8. 8.
    Salekhov, G.S., Generalization of d’Alembert and Poisson formulas, Uspekhi Mat. Nauk, 1947, vol. 2, no. 40, pp. 175–182.MathSciNetGoogle Scholar
  9. 9.
    Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.Google Scholar
  10. 10.
    Sveshnikov, A.G., Bogolyubov, A.N., and Kravtsov, V.V., Lektsii po matematicheskoi fizike (Lectures in Mathematical Physics), Moscow: Nauka, 2004.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations