Advertisement

Differential Equations

, Volume 55, Issue 2, pp 220–230 | Cite as

Boundary Value Problem for a Differential-Difference Mixed-Compound Equation with Fractional Derivative and with Functional Delay and Advance

  • A. N. ZarubinEmail author
Partial Differential Equations
  • 5 Downloads

Abstract

Sufficient conditions for the unique solvability of a problem for the diffusion-wave equation with fractional derivative, concentrated deviation in time, and functional delay and advance in the spatial variable are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    El’sgol’ts, L.E. and Norkin, S.V., Vvedenie v teoriyu differentsial’nykh uravnenii s otklonyayushchimsya argumentom (Introduction to the Theory of Differential Equations with Deviating Argument), Moscow: Nauka, 1971.Google Scholar
  2. 2.
    Zarubin, A.N., Uravneniya smeshannogo tipa s zapazdyvayushchim argumentom (Equations of the Mixed Type with Retarded Argument), Orel: Orlovsk. Gos. Univ., 1997.Google Scholar
  3. 3.
    Razgulin, A.V., Zadacha upravleniya preobrazovaniem argumentov v funktsional’no-differentsial’nykh uravneniyakh matematicheskoi fiziki (Problem of Control of Argument Transformation in Functional-Differential Equations of Mathematical Physics), Moscow: MAKS Press, 2006.Google Scholar
  4. 4.
    Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Fractional Integrals and Derivatives and Some of Their Applications), Minsk: Nauka i Tekhnika, 1987.Google Scholar
  5. 5.
    Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Nauka, 1971.Google Scholar
  6. 6.
    Frankl, F.I., Izbrannye trudy po gazovoi dinamike (Collected Papers on Gas Dynamics), Moscow: Nauka, 1973.Google Scholar
  7. 7.
    Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.Google Scholar
  8. 8.
    Ter-Krikorov, A.M. and Shabunin, M.I., Kurs matematicheskogo analiza (Course of Mathematical Analysis), Moscow: Nauka, 1988.zbMATHGoogle Scholar
  9. 9.
    Nakhushev, A.M., Elementy drobnopgo ischisleniya i ikh primenenie (Elements of Fractional Calculus and Their Applications), Nalchik: KBNTs RAN, 2000.Google Scholar
  10. 10.
    Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam–Tokyo: Elsevier/North-Holland, 2005.zbMATHGoogle Scholar
  11. 11.
    Ditkin, V.A. and Prudnikov, A.P., Integral’nye preobrazovaniya i operatsionnoe ischislenie (Integral Transforms and Operational Calculus), Moscow: Gos. Izd. Fiz. Mat. Lit. 1974.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Turgenev Orel State UniversityOrelRussia

Personalised recommendations