Advertisement

Differential Equations

, Volume 55, Issue 2, pp 159–168 | Cite as

Method for Finding Periodic Trajectories of Centrally Symmetric Dynamical Systems on the Plane

  • L. A. KliminaEmail author
Ordinary Differential Equations
  • 13 Downloads

Abstract

The problem of finding the cycles of a dynamical system on the plane is considered under the assumption that the system is centrally symmetric. We suggest an iteration method where, at each step, the function describing an approximation of a periodic trajectory is determined as a trajectory of some Hamiltonian system. If the resulting function sequence converges, then the limit is a periodic trajectory of the exact system. The efficiency of the method is illustrated by examples of seeking the cycles in the classical problems on the van der Pol oscillator and the perturbed Duffing oscillator for the case in which the coefficient of nonconservative terms takes values of the order of unity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pontryagin, L.S., On dynamic systems close to Hamiltonian systems, Zh. Eksper. Teor. Fiz., 1934, vol. 4, no. 9, pp. 234–238.Google Scholar
  2. 2.
    Krylov, N.M. and Bogolyubov, N.N., Prilozhenie metodov nelineinoi mekhaniki k teorii statsionarnykh kolebanii (Application of Methods of Nonlinear Mechanics to the Theory of Stationary Vibrations), Kiev: Akad. Nauk UkrSSR, 1934.Google Scholar
  3. 3.
    Bogolyubov, N.N., O nekotorykh staticheskikh metodakh v matematicheskoi fizike (On Some Static Methods in Mathematical Physics), Kiev: Akad. Nauk UkrSSR, 1945.Google Scholar
  4. 4.
    Bogolyubov, N.N., Perturbation methods in nonlinear mechanics, Sb. Tr. Inst. Structural Mech. Acad. Nauk SSSR, 1950, no. 14, pp. 9–34.Google Scholar
  5. 5.
    Bogolyubov, N.N. and Mitropol’skii, Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii (Asymptotic Methods in the Theory of Nonlinear Oscillations), Moscow: Gostekhteorizdat, 1955.Google Scholar
  6. 6.
    Bryuno, A.D., The normal form of a system close to a Hamiltonian system, Math. Notes, 1990, vol. 48, no. 5, pp. 1100–1108.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Samoilenko, A.M., Numerical analytical method of investigating periodic systems of ordinary differential equations. I, Ukrain. Mat. Zh., 1965, vol. 17, no. 4, pp. 82–93.CrossRefGoogle Scholar
  8. 8.
    Rachunkova, I., Rachunek, L., Ronto, A., and Ronto, M., A constructive approach to boundary value problems with state-dependent impulses, Appl. Math. Comput., 2016, vol. 274, pp. 726–744.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tai, L.L., Numerical-analytic method for the investigation of autonomous systems of differential equations, Ukrain. Mat. Zh., 1978, vol. 30, no. 3, pp. 309–317.Google Scholar
  10. 10.
    Ronto, N.I., Samoilenko, A.M., and Trofimchuk, S.I., The theory of the numerical-analytic method: Achievements and new trends of development. IV, Ukr. Math. J., 1998, vol. 50, no. 12, pp. 1888–1907.CrossRefzbMATHGoogle Scholar
  11. 11.
    Renson, L., Kerschen, G., Cochelin, B., Numerical computation of nonlinear normal modes in mechanical engineering, J. Sound Vibration, 2016, vol. 364, pp. 177–206.CrossRefGoogle Scholar
  12. 12.
    Lust, K. and Roose, D., An adaptive Newton–Picard algorithm with subspace iteration for computing periodic solutions, SIAM J. Sci. Comput., 1998, vol. 19, no. 4, pp. 1188–1209.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bindel, D., Friedman, M., Govaerts, W., Hughes, J., and Kuznetsov, Y.A., Numerical computation of bifurcations in large equilibrium systems in Matlab, J. Comput. Appl. Math., 2014, vol. 261, pp. 232–248.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bautin, N.N. and Leontovich, E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti (Methods and Techniques for Qualitative Analysis of Dynamical Systems on the Plane), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  15. 15.
    Van der Pol, B., On relaxation-oscillations, The London, Edinburgh and Dublin Philos. Mag. & J. Sci., 1927, vol. 2, no. 7, pp. 978–992.Google Scholar
  16. 16.
    Lienard, A., Etude des oscillations entretenues, Revue générale de l’électricité, 1928, vol. 23, pp. 901–912, 946–954.Google Scholar
  17. 17.
    Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973. Translated under the title Metody vozmushchenii, Moscow: Mir, 1976.zbMATHGoogle Scholar
  18. 18.
    Dorodnitsyn, A.A., Asymptotic solution of the van der Pol equation, Prikl. Mat. Mekh., 1947, vol. 11, no. 3, pp. 313–328.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Andersen, C.M. and Geer, J.F., Power series expansions for the frequency and period of the limit cycle of the van der Pol equation, SIAM J. Appl. Math., 1982, vol. 42, no. 3, pp. 678–693.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Duffing, G., Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung, Braunschweig: Vieweg Verlag, 1918.zbMATHGoogle Scholar
  21. 21.
    Arnold, V.I., Dopolnitel’nye glavy teorii obyknovennykh differentsial’nykh uravnenii (Additional Chapters of the Theory of Ordinary Differential Equations), Moscow: Nauka, 1978.Google Scholar
  22. 22.
    Klimina, L.A., Lokshin, B.Ya., and Samsonov, V.A., Bifurcation diagram of the self-sustained oscillation modes for a system with dynamic symmetry, J. Appl. Math. Mech., 2017, vol. 81, no. 6, pp. 442–449.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Amel’kin, V.V., Existence of limit cycles of two-dimensional autonomous differential equation systems, Differ. Equations, 1988, vol. 24, no. 12, pp. 1353–1357.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Papush, P.N., On finding regular semi-stable limit cycles, Uspekhi Mat. Nauk, 1952, vol. 7, no. 4 (50), pp. 165–168.Google Scholar
  25. 25.
    Chechik, V.A., Necessary and sufficient conditions of semistability of a limit cycle, Uspekhi Mat. Nauk, 1955, vol. 10, no. 1 (63), pp. 183–187.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of MechanicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations