Advertisement

Differential Equations

, Volume 55, Issue 2, pp 149–158 | Cite as

Basis Properties in Lp of a Sturm-Liouville Operator with Spectral Parameter in the Boundary Conditions

  • N. B. KerimovEmail author
Ordinary Differential Equations
  • 15 Downloads

Abstract

The Sturm-Liouville operator with spectral parameter in the boundary conditions is considered, and sufficient conditions for the basis property of the system of eigenfunctions of this operator in the space Lp(0, 1), 1 < p < ∞, are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walter, J., Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z., 1973, vol. 133, no. 44, pp. 301–302.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fulton, C.T., Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburg Sect. A, 1977, vol. 77, no. 3–4, pp. 293–308.Google Scholar
  3. 3.
    Russakovskii, E.M., Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl., 1975, vol. 9, no. 4, pp. 358–359.CrossRefGoogle Scholar
  4. 4.
    Kerimov, N.B. and Allakhverdiev, T.I., On a boundary value problem. I, Differ. Equations, 1993, vol. 29, no. 1, pp. 45–50.zbMATHGoogle Scholar
  5. 5.
    Kerimov, N.B. and Allakhverdiev, T.I., On a boundary value problem. II, Differ. Equations, 1993, vol. 29, no. 6, pp. 814–821.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Binding, P.A., Browne, P.J., and Seddighi, K., Sturm–Lioville problems with eigenparameter dependent boundary conditions, Proc. Edinb. Math. Soc. 1994, vol. 37, no. 1, pp. 57–72.Google Scholar
  7. 7.
    Kapustin, N.Yu. and Moiseev, E.I., Spectral problems with the spectral parameter in the boundary condition, Differ. Equations, 1997, vol. 33, no. 1, pp. 116–120.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kapustin, N.Yu., Oscillation properties of solutions to a non-self-adjoint spectral problem with spectral parameter in the boundary condition. Differ. Equations, 1999, vol. 35, no. 8, pp. 1031–1034.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kapustin, N.Yu. and Moiseev, E.I., The basis property in Lp of the system of eigenfunctions corresponding to two problems with a spectral parameter in the boundary condition, Differ. Equations, 2000, vol. 36, no. 10, pp. 1498–1501.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moiseev, E.I. and Kapustin, N.Yu, On the singularities of the root space of a spectral problem with a spectral parameter in the boundary condition, Dokl. Math., 2002, vol. 66, no. 1, pp. 14–18.Google Scholar
  11. 11.
    Kerimov, N.B. and Mirzoev, V.S., On the basis properties of a spectral problem with a spectral parameter in a boundary condition, Sib. Math. J., 2003, vol. 44, no. 5, pp. 813–815.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kapustin, N.Yu., On a spectral problem arising in a mathematical model of torsional vibrations of a rod with pulleys at the ends, Differ. Equations, 2005, vol. 41, no. 10, pp. 1490–1492.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kerimov, N.B. and Poladov, R.G., On basicity in Lp(0, 1) (1 < p < ∞) of the system of eigenfunctions of one boundary value problem. I, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 2005, vol. 22, no. 30, pp. 53–64.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kerimov, N.B. and Poladov, R.G., On basicity in Lp(0, 1) (1 < p < ∞) of the system of eigenfunctions of one boundary value problem. II, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 2005, vol. 23, no. 31, pp. 65–76.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Aliev, Z.S., Basis properties of the root functions of an eigenvalue problem with a spectral parameter in the boundary conditions, Dokl. Math., 2010, vol. 82, no. 1, pp. 583–586.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kerimov, N.B. and Poladov, R.G., Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions, Dokl. Math., 2012, vol. 85, no. 1, pp. 8–13.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Naimark, M.A., Lineinye differentsial’nye operatory (Linear Differential Operators), Moscow: Nauka, 1969.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Khazar UniversityBakuAzerbaijan

Personalised recommendations