Advertisement

Differential Equations

, Volume 55, Issue 1, pp 126–137 | Cite as

Controllability Problems for the Korteweg–de Vries Equation with Integral Overdetermination

  • A. V. FaminskiiEmail author
Control Theory
  • 7 Downloads

Abstract

We establish results on the unique solvability of control problems for the Korteweg–de Vries equation and its linearized analog in a bounded domain under an integral overdetermination condition. For the Korteweg–de Vries equation itself, we impose smallness conditions on either the input data or the time interval. These restrictions are absent in the linear case. For the control we take either the value of the derivative of the solution on one of the boundaries or the right-hand side of the equation, which has a special form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korteweg, D.G and de Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 1895, vol. 39, pp. 422–443.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Temam, R., Sur un problème non linéaire, J. Math. Pures Appl., 1969, vol. 48, no. 2, pp. 159–172.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Khablov, V.V., O nekotorykh korrektnykh postanovkakh granichnykh zadach dlya uravneniya Kortevega–de Friza (On Some Well-Posed Statements of Boundary Value Problems for the Korteweg–de Vries Equation), Preprint Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1979.Google Scholar
  4. 4.
    Bubnov, B.A., Solvability in the large of nonlinear boundary value problems for the Korteweg–de Vries equation in a bounded domain, Differ. Uravn., 1980, vol. 16, no. 1, pp. 34–41.Google Scholar
  5. 5.
    Faminskii, A.V., On an initial boundary value problem in a bounded domain for the generalized Korteweg–de Vries equation, Funct. Differ. Equations, 2001, vol. 8, no. 1–2, pp. 183–194.Google Scholar
  6. 6.
    Colin, T. and Ghidaglia, J.-M., An initial–boundary-value problem for the Korteweg–de Vries equation posed on a finite interval, Adv. Differ. Equations, 2001, vol. 6, no. 12, pp. 1463–1492.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Colin, T. and Gisclon, M., An initial–boundary-value problem that approximates the quarter-plane problem for the Korteweg–de Vries equation, Nonlinear Anal., 2001, vol. 46, no. 6, pp. 869–892.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bona, J.L., Sun, S.M., and Zhang, B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Commun. Partial Differ. Equations, 2003, vol. 28, no. 7–8, pp. 1391–1436.CrossRefzbMATHGoogle Scholar
  9. 9.
    Faminskii, A.V., On the two initial boundary-value problems for the generalized KdV equation, in Nelineinye granichnye zadachi (Nonlinear Boundary-Value Problems), Collection of Papers, Donetsk, 2004, no. 14, pp. 58–71.zbMATHGoogle Scholar
  10. 10.
    Holmer, J., The initial–boundary value problem for the Korteweg–de Vries equation, Commun. Pure Appl. Math., 2006, vol. 31, no. 8, pp. 1151–1190.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rosier, L. and Zhang, B.-Y., Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM J. Control Optim., 2006, vol. 45, no. 3, pp. 927–956.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Faminskii, A.V., Global well-posedness of two initial–boundary-value problems for the Korteweg–de Vries equation, Differ. Integr. Equations, 2007, vol. 20, no. 6, pp. 601–643.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bona, J.L., Sun, S.M., and Zhang, B.-Y., A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain: II, J. Differ. Equations, 2009, vol. 247, no. 9, pp. 2558–2596.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Faminskii, A.V. and Larkin, N.A., Initial–boundary value problems for quasilinear dispersive equations posed on a bounded interval, Electronic J. Differ. Equations, 2010, no. 1, pp. 1–20.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Faminskii, A.V., Weak solutions to initial–boundary-value problems for quasilinear evolution equations of an odd order, Adv. Differ. Equations, 2012, vol. 17, no. 5–6, pp. 421–470.Google Scholar
  16. 16.
    Caicedo, M.A. and Zhang, B.-Y., Well-posedness of a nonlinear boundary value problem for the Korteweg–de Vries equation on a bounded domain, J. Math. Anal. Appl., 2017, vol. 448, no. 2, pp. 797–814.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Russel, D.L. and Zhang, B.-Y., Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc., 1996, vol. 348, no. 9, pp. 3643–3672.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rosier, L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 1997, vol. 2, pp. 33–55.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, B.-Y., Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim., 1999, vol. 37, no. 2, pp. 543–565.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Coron, J.-M. and Crépeau, E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 2004, vol. 6, no. 3, pp. 367–398.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rosier, L., Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Cal. Var., 2004, vol. 10, no. 3, pp. 346–380.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cerpa, E., Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim., 2007, vol. 46, no. 3, pp. 877–899.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Glass, O. and Guerrero, S., Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptotic Analysis, 2008, vol. 60, no. 1–2, pp. 61–100.Google Scholar
  24. 24.
    Cerpa, E. and Crépeau, E., Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain, Ann. Inst. H. Poincaré (C) Nonlinear Anal., 2009, vol. 26, no. 2, pp. 457–475.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Laurent, C., Rosier, L., and Zhang, B.-Y., Control and stabilization of the Korteweg–de Vries equation on a periodic domain, Commun. Partial Differ. Equations, 2010, vol. 35, no. 4, pp. 707–744.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Glass, O. and Guerrero, S., Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition, Syst. Control Lett., 2010, vol. 59, no. 7, pp. 390–395.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cerpa, E., Rivas, I., and Zhang, B.-Y., Boundary controllability of the Korteweg–de Vries equation on a bounded domain, SIAM J. Control Optim., 2013, vol. 51, no. 4, pp. 2976–3010.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Capistrano-Filho, R.A., Pazoto, A.F., and Rosier, L., Internal controllability of the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var. 2015, vol. 21, no. 4, pp. 1076–1107.Google Scholar
  29. 29.
    Prilepko, A.I., Orlovsky, D.G., and Vasin, I.A., Methods for Solving Inverse Problems in Mathematical Physics, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 231, New York: Marcel Dekker, 2000.zbMATHGoogle Scholar
  30. 30.
    Kenig, C.E., Ponce, G., and Vega, L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., 1993, vol. 46, no. 4, pp. 527–620.Google Scholar
  31. 31.
    Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, Berlin: Birkhäuser, 1977. Translated under the title Teoriya interpolyatsii. Funktsional’nye prostranstva. Differentsial’nye operatory, Moscow: Mir, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations