Advertisement

Differential Equations

, Volume 53, Issue 5, pp 665–676 | Cite as

Elliptic differential dilation–contraction problems on manifolds with boundary

  • A. Yu. Savin
  • B. Yu. Sternin
Partial Differential Equations

Abstract

We give a statement of dilation–contraction boundary value problems on manifolds with boundary in the scale of Sobolev spaces. For such problems, we introduce the notion of symbol and prove the corresponding finiteness theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savin, A.Yu. and Sternin, B.Yu., Elliptic dilation–contraction problems on manifolds with boundary. C*-theory, Differ. Equations, 2016, vol. 52, no. 10, pp. 1331–1340.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambartsumyan, V.A., On theory of fluctuations in Milky Way, Dokl. Akad. Nauk SSSR, 1944, vol. 44, no. 6, pp. 244–247.MathSciNetGoogle Scholar
  3. 3.
    Ockendon, J.R. and Tayler, A.B., The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1971, vol. 322, pp. 447–468.CrossRefGoogle Scholar
  4. 4.
    Hall, A.J. and Wake, G.C., A functional differential equation arising in the modeling of cell growth, J. Aust. Math. Soc. Ser. B, 1989, vol. 30, pp. 424–435.CrossRefzbMATHGoogle Scholar
  5. 5.
    Bitsadze, A.V. and Samarskii, A.A., Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 1969, vol. 185, no. 4, pp. 739–740.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Rossovskii, L.E., Elliptic functional-differential equations with contraction and expansion of the arguments of an unknown function, Sovrem. Mat. Fundam. Napravl., 2014, vol. 54, pp. 3–138.MathSciNetGoogle Scholar
  7. 7.
    Novikov, S.P. and Sternin, B.Yu., Traces of elliptic operators on submanifolds and K-theory, Soviet. Math. Dokl., 1966, vol. 7, pp. 1373–1376.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Novikov, S.P. and Sternin, B.Yu., Elliptic operators and submanifolds, Soviet Math. Dokl., 1966, vol. 7, pp. 1508–1512.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Antonevich, A.B., Lineinye funktsional’nye uravneniya. Operatornyi podkhod, Minsk: Universitetskoe, 1988. Engl. transl.: Linear Functional Equations. Operator Approach, Basel: Birkhauser Verlag, 1996.Google Scholar
  10. 10.
    Savin, A. and Sternin, B., Elliptic theory for operators associated with diffeomorphisms of smooth manifolds, in Pseudo-Differential Operators, Generalized Functions and Asymptotics, vol. 231 of Operator Theory: Advances and Applications, 2013, pp. 1–26.CrossRefGoogle Scholar
  11. 11.
    Nguen, L.L., Sobolev problems for finite group actions, Tr. Moskov. Fiz.-Tekhn. Inst., 2012, vol. 4, no. 4, pp. 125–133.Google Scholar
  12. 12.
    Savin, A.Yu. and Sternin, B.Yu., On nonlocal Sobolev problems, Dokl. Math., 2013, vol. 88, no. 1, pp. 421–424.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Loshchenova, D.A., Sobolev problems associated with Lie group actions, Differ. Equations, 2015, vol. 51, no. 8, pp. 1051–1064.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Agranovich, M.S., Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, Moscow, 2014. Engl. transl.: Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, Cham: Springer International Publ., 2015.Google Scholar
  15. 15.
    Savin, A.Yu., On the symbol of nonlocal operators in Sobolev spaces, Differ. Equations, 2011, vol. 47, no. 6, pp. 897–900.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rempel, S. and Schulze, B.-W., A theory of pseudodifferential boundary value problems with discontinuity conditions, Ann. Global Anal. Geom., 1984, vol. 2, pp. 163–251, 289–384.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  2. 2.Leibniz Universität HannoverHannoverGermany

Personalised recommendations