Differential Equations

, Volume 49, Issue 11, pp 1366–1377 | Cite as

Semigroup property of the program absorption operator in games with simple motions on the plane

  • L. V. Kamneva
  • V. S. Patsko
Control Theory

Abstract

The program absorption operator takes the terminal set given at the terminal time to some set defined at the initial time. For differential games with simple motions on the plane, we obtain sufficient conditions under which the semigroup property also holds in the case of a nonconvex terminal set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isaacs, R., Differential Games, New York, 1965. Translated under the title Differentsial’nye igry, Moscow: Mir, 1967.MATHGoogle Scholar
  2. 2.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.MATHGoogle Scholar
  3. 3.
    Krasovskii, N.N. and Subbotin, A.I., Game-Theoretic Control Problems, New York, 1988.CrossRefGoogle Scholar
  4. 4.
    Botkin, N.D., Numerical Construction of Cross-Sections of the Set of Positional Absorption in Linear Differential Game, in Algoritmy i programmy resheniya lineinykh differentsial’nykh igr: Sb. nauch. tr. (Algorithms and Programs of Solution of Linear Differential Games: Collection of Scientific Works), Subbotin, A.I. and Patsko, V.S., Eds., Sverdlovsk, 1984, pp. 5–38.Google Scholar
  5. 5.
    Isakova, E.A., Logunova, G.V., and Patsko, V.S., Construction of Stable Bridges in Linear Differential Game with Fixed Termination Time, in Algoritmy i programmy resheniya lineinykh differentsial’nykh igr: Sb. nauch. tr. (Algorithms and Programs of Solution of Linear Differential Games: Collection of Scientific Works), Subbotin, A.I. and Patsko, V.S., Eds., Sverdlovsk, 1984, pp. 127–158.Google Scholar
  6. 6.
    Pshenichnyi, B.N. and Sagaidak, M.I., Differential Games with Fixed Time, Kibernetika, 1970, no. 2, pp. 54–63.Google Scholar
  7. 7.
    Pontryagin, L.S., Linear Differential Games. II, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 4, pp. 764–766.MathSciNetGoogle Scholar
  8. 8.
    Khadviger, G., Lektsii ob ob’eme, ploshchadi poverkhnosti i izoperimetrii (Lectures on Volume, Surface Area and Isoperimetry), Moscow: Nauka, 1966.Google Scholar
  9. 9.
    Subbotin, A.I., Obobshchennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii (Generalized Solutions of First-Order Partial Differential Equations: Prospects of Dynamic Optimization), Moscow, 2003.Google Scholar
  10. 10.
    Schwartz, L., Analiz (Analysis), Moscow, 1972, Vols. 1, 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. V. Kamneva
    • 1
  • V. S. Patsko
    • 1
  1. 1.Institute for Mathematics and Mechanics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations