Advertisement

Differential Equations

, Volume 49, Issue 11, pp 1329–1335 | Cite as

Inversion of vector delay systems

  • E. I. Atamas’
  • A. V. Il’in
  • V. V. Fomichev
Control Theory

Abstract

We consider stationary linear vector systems with commensurable delays. We obtain sufficient conditions for the reducibility of such systems to canonical form with the extraction of null dynamics. A constructive algorithm for the reduction of a system to that form is presented. We suggest a method for estimating the unknown input for vector delay systems with given accuracy.

Keywords

Polynomial Matrix Great Common Divisor Unknown Input Unknown Signal Inversion Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Algorithms for the Inversion of Linear Scalar Dynamical Systems: the Controlled Model Method, Differ. Uravn., 1997, vol. 33, no. 3, pp. 329–339.MathSciNetGoogle Scholar
  2. 2.
    Korovin, S.K., Il’in, A.V., and Fomichev, V.V., The Controllable Model Method in Problems of Inversion of Dynamical Systems, Dokl. Akad. Nauk Teor. Upravl., 1997, vol. 354, no. 2, pp. 171–173.MathSciNetGoogle Scholar
  3. 3.
    Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Algorithms of Inversion of Linear Controlled Systems, Differ. Uravn., 1998, vol. 34, no. 6, pp. 744–750.MathSciNetGoogle Scholar
  4. 4.
    Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Robust Inversion of Vector Linear Systems, Differ. Uravn., 1998, vol. 34, no. 11, pp. 1478–1486.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Il’in, A.V., Emel’yanov, S.V., and Fomichev, V.V., Synthesis of Robust Inverters of Minimum Order, Differ. Uravn., 2009, vol. 45, no. 4, pp. 575–585.MathSciNetGoogle Scholar
  6. 6.
    Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Metody robastnogo obrashcheniya dinamicheskikh sistem (Methods of Robust Inversion of Dynamical Systems), Moscow, 2009.zbMATHGoogle Scholar
  7. 7.
    Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Inversion of Linear Dynamical Systems with Delay, Differ. Uravn., 2012, vol. 48, no. 3, pp. 405–413.Google Scholar
  8. 8.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow, 1967.Google Scholar
  9. 9.
    Bobyleva, O.N., Fomichev, V.V., and Fursov, A.S., On a Sufficient Condition for the Existence of a Common Stabilizer for a Family of Dynamical Systems, Differ. Uravn., 2011, vol. 47, no. 8, pp. 1077–1083.MathSciNetGoogle Scholar
  10. 10.
    Korovin, S.K., Kudritskii, A.V., and Fursov, A.S., On Some Approaches to the Simultaneous Stabilization of Linear Plants by a Controller with a Given Structure, Differ. Uravn., 2009, vol. 45, no. 4, pp. 597–608.MathSciNetGoogle Scholar
  11. 11.
    Korovin, S.K., Kudritskii, A.V., and Fursov, A.S., On the Simultaneous Stabilization of Linear Plants of Arbitrary Orders by a Controller of Given Structure, Dokl. Akad. Nauk, 2008, vol. 423, no. 2, pp. 173–177.zbMATHMathSciNetGoogle Scholar
  12. 12.
    Il’in, A.V., Izobov, N.A., Fomichev, V.V., and Fursov, A.S., On the Construction of a Common Stabilizer for Families of Linear Time-Dependent Plants, Dokl. Akad. Nauk, 2013, vol. 448, no. 3, pp. 279–284.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. I. Atamas’
    • 1
  • A. V. Il’in
    • 1
  • V. V. Fomichev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations