Differential Equations

, Volume 48, Issue 13, pp 1700–1720

Aircraft control with anti-windup compensation

  • G. A. Leonov
  • B. R. Andrievskii
  • N. V. Kuznetsov
  • A. Yu. Pogromskii
Control Theory

Abstract

We consider an anti-windup compensation method ensuring the convergence of the closed-loop system for a class of reference signals. An application of the method to an aircraft flight control problem is shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lozier, J.C., A Steady-State Approach to the Theory of Saturable Servo Systems, IEEE Trans. Automat. Control, May 1956, pp. 19–39.Google Scholar
  2. 2.
    Dornheim, M., Report Pinpoints Factors Leading to YF-22 Crash, Aviation Week and Space Technology, 1992, vol. 137, pp. 53–54.Google Scholar
  3. 3.
    Shifrin, C., Sweden Seeks Cause of Gripen Crash, Aviation Week and Space Technology, 1993, vol. 139, pp. 78–79.Google Scholar
  4. 4.
    Yildiz, Y. and Kolmanovsky, I., A Control Allocation Technique to Recover from Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting, Proc. Amer. Control Conf. (ACC 2010). Baltimore, MD, USA, AACC, June 30–July 02, 2010, pp. 516–523.Google Scholar
  5. 5.
    Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden Oscillations in Nonlinear Control Systems, IFAC Proc. Volumes (IFAC-PapersOnline), 2010, vol. 18, no. 1, pp. 2506–2510.Google Scholar
  6. 6.
    Leonov, G.A. and Kuznetsov, N.V., Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems, Dokl. Math., 2011, vol. 84, no. 1, pp. 475–481.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., and Leonov, G.A., Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua’s Circuits, J. Comput. Systems Sci. Internat., 2011, vol. 50, no. 4, pp. 511–543.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., and Vagaitsev, V.I., Hidden Oscillations in Dynamical Systems, Trans. Syst. Control, 2011, vol. 6, no. 2, pp. 54–67.Google Scholar
  9. 9.
    Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Localization of Hidden Chua’s Attractors, Phys. Lett. A, 2011, vol. 375, no. 23, pp. 2230–2233.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lauvdal, T., Murray, R., and Fossen, T., Stabilization of Integrator Chains in the Presence of Magnitude and Rate Saturations: A Gain Scheduling Approach, Proc. IEEE Control and Decision Conference, 1997.Google Scholar
  11. 11.
    Raushenbakh, B.V. and Tokar’, E.N., Upravlenie orientatsiei kosmicheskikh apparatov (Control of the Spacecraft Attitude), Moscow: Nauka, 1974.Google Scholar
  12. 12.
    Kargu, L.I., Sistemy uglovoi stabilizatsii kosmicheskikh apparatov (Systems of the Angular Stabilization of Spacecraft), Moscow: Mashinostroenie, 1980.Google Scholar
  13. 13.
    Keldysh, M.V., Izbrannye trudy. Mekhanika (Selected Papers. Mechanics), Moscow: Nauka, 1985.MATHGoogle Scholar
  14. 14.
    Hanus, R., Antiwindup and Bumpless Transfer: A survey, Proc. 12th IMACS World Congr., vol. 2, Paris, France, Jul. 1988, pp. 59–65.Google Scholar
  15. 15.
    Åström, K.J. and Rundqwist, L., Integrator Windup and How to Avoid It, Proc. Amer. Control Conf. (ACC-89), vol. 2, Pittsburgh, PA, USA, Jun. 1989, pp. 1693–1698.Google Scholar
  16. 16.
    Bernstein, D. and Michel, A., A Chronological Bibliography on Saturating Actuators, Internat. J. Robust Nonlinear Control, 1995, vol. 5, pp. 375–380.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Glattfelder, A. and Schaufelberger, W., Control Systems with Input and Output Constraints, Springer-Verlag, 2003.MATHCrossRefGoogle Scholar
  18. 18.
    Hippe, P., Windup in Control: Its Effects and Their Prevention, New York: Springer-Verlag, 2006.Google Scholar
  19. 19.
    Tarbouriech, S. and Turner, M., Anti-Windup Design: An Overview of Some Recent Advances and Open Problems, IET Control Theory Appl., 2009, vol. 3, no. 1, pp. 1–19, https://lra.le.ac.uk/handle/2381/4813.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kapasouris, P., Athans, M., and Stein, G., Design of Feedback Control Systems for Stable Plants with Saturating Actuators, Proc. 27th IEEE Conf. Decision and Control (CDC-88), vol. 1. Austin, Texas: IEEE, Dec. 1988, pp. 469–479.CrossRefGoogle Scholar
  21. 21.
    Athans, M. and Falb, P., Optimal Control, New York: McGraw-Hill, 1966.MATHGoogle Scholar
  22. 22.
    Formal’skii, A.M., Upravlyaemost’ i ustoichivost’ sistem s ogranichennymi resursami (Controllability and Stability of Systems with Limited Resources), Moscow: Nauka, 1974.Google Scholar
  23. 23.
    Glattfelder, A. and Scaufelberger, W., Stability Analysis of Single Loop Control Systems with Saturation and Antireset-Windup Circuits, IEEE Trans. Automat. Control, 1983, vol. 28, no. 12, pp. 1074–1081.MATHCrossRefGoogle Scholar
  24. 24.
    Hanus, R., A New Technique for Preventing Control Windup, Journal A, 1980, vol. 21, no. 1, pp. 15–20.Google Scholar
  25. 25.
    Glattfelder, A. and Schaufelberger, W., Stability of Discrete Override and Cascade-Limiter Single-Loop Control Systems, IEEE Trans. Automat. Control, 1988, vol. 33, no. 6, pp. 532–540.MATHCrossRefGoogle Scholar
  26. 26.
    Hsu, J.C. and Meyer, A.U., Modern Control Principles and Applications, New York: McGraw-Hill, 1968. Translated under the title Sovremennaya teoriya avtomaticheskogo upravleniya i ee primenenie, Moscow: Mashinostroenie, 1972.MATHGoogle Scholar
  27. 27.
    Jury, E. and Lee, B., On the Stability of a Certain Class of Nonlinear Sampled Data Systems, IEEE Trans. Automat. Control, 1964, vol. AC-9, no. 1, pp. 51–61.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tsypkin, Ya.Z., Frequency-Domain Criteria for Absolute Stability of Nonlinear Sampled-Data Systems, Avtomat. i Telemekh., 1964, no. 3, pp. 281–289.Google Scholar
  29. 29.
    Kapasouris, P. and Athans, M., Multivariable Control Systems with Saturating Actuators Antireset Windup Sstrategies, Proc. Amer. Control Conf. (ACC-85), Boston, MA, USA, Jun. 1985, pp. 1579–1584.Google Scholar
  30. 30.
    Kapasouris, P. and Athans, M., Control Systems with Rate and Magnitude Saturation for Neutrally Stable Open Loop Systems, Proc. 29th IEEE Conf. on Decision and Control (CDC-90), Honolulu. Hawaii: IEEE, Dec. 1990, vol. 6, pp. 3404–3409.CrossRefGoogle Scholar
  31. 31.
    Kothare, M., Campo, P.J., Morari, M., and Nett, C.N., A Unified Framework for the Study of Antiwindup Designs, Automatica, 1994, vol. 30, no. 12, pp. 1869–1883.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kothare, M. and Morari, M., Multiplier Theory for Stability Analysis of Antiwindup Control Systems, Automatica, 1999, vol. 35, pp. 917–928.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input-Output Properties, New York: Academic, 1975. Translated under the title Sistemy s obratnoi svyaz’yu: vkhod-vykhodnye otnosheniya, 1983.MATHGoogle Scholar
  34. 34.
    Balakrishnan, V., Linear Matrix Inequalities in Robustness Analysis with Multipliers, Systems Control Lett., 1995, vol. 25, no. 4, pp. 265–272.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Zames, G. and Falb, P., Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities, SIAM J., 1968, vol. 6, no. 1, pp. 89–108.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Barbu, C., Reginatto, R., Teel, A.R., and Zaccarian, L., Anti-Windup Design for Manual Flight Control, Proc. Amer. Control Conf. (ACC-99), AACC, Jun. 1999, vol. 5, pp. 3186–3190.Google Scholar
  37. 37.
    Barbu, C., Galeani, S., Teel, A.R., and Zaccarian, L., Non-Linear Anti-Windup for Manual Flight Control, Internat. J. Control, Sep. 2005, vol. 78, no. 14, pp. 1111–1129.Google Scholar
  38. 38.
    Wu, F. and Soto, M., Extended Anti-Windup Control Schemes for LTI and LFT Systems with Actuator Saturations, Internat. J. Robust Nonlinear Control, Oct. 2004, vol. 14, no. 15, pp. 1255–1281.Google Scholar
  39. 39.
    Sofrony, J., Turner, M.C., Postlethwaite, I., Brieger, O., and Leissling, D., Antiwindup Synthesis for PIO Avoidance in an Experimental Aircraft, Proc. 45th IEEE Conf. Decision & Control (CDC 2006), San Diego, CA, USA: IEEE, Piscataway, NJ, Dec. 13–15, 2006, pp. 5412–5417.CrossRefGoogle Scholar
  40. 40.
    Brieger, O., Kerr, M., Leissling, D., Postlethwaite, J., Sofrony, J., and Turner, M.C., Anti-Windup Compensation of Rate Saturation in an Experimental Aircraft, Proc. Amer. Control Conf. (ACC 2007), AACC, Jul. 2007, pp. 924–929.Google Scholar
  41. 41.
    Brieger, O., Kerr, M., Postlethwaite, J., Sofrony, J., and Turner, M.C., Flight Testing of Low-Order Anti-Windup Compensators for Improved Handling and PIO Suppression, in Proc. Amer. Control Conf. (ACC 2008), AACC, Jun. 2008, pp. 1776–1781.Google Scholar
  42. 42.
    Queinnec, I., Tarbouriech, S., and Garcia, G., Anti-Windup Design for Aircraft Flight Control, Proc. IEEE Int. Symp. Intelligent Control, Oct. 2006, pp. 2541–2546.Google Scholar
  43. 43.
    Roos, C. and Biannic, J., Aircraft-on-Ground Lateral Control by an Adaptive LFT-Based Anti-Windup Approach, Proc. IEEE Int. Symp. Intelligent Control, Oct. 2006, pp. 2207–2212.Google Scholar
  44. 44.
    Tiwari, P.Y., Mulder, E.F., and Kothare, M.V., Multivariable Anti-Windup Controller Synthesis Incorporating Multiple Convex Constraints, Proc. Amer. Control Conf. (ACC 2007), AACC, Jul. 2007, pp. 5212–5217.Google Scholar
  45. 45.
    Kahveci, N.E., Ioannou, P.A., and Mirmirani, M.D., A Robust Adaptive Control Design for Gliders Subject to Actuator Saturation Nonlinearities, Proc. Amer. Control Conf. (ACC 2007), AACC, Jul. 2007, pp. 492–497.Google Scholar
  46. 46.
    Kahveci, N.E., Ioannou, P.A., and Mirmirani, M.D., Adaptive LQ Control with Anti-Windup Augmentation to Optimize UAV Performance in Autonomous Soaring Applications, IEEE Trans. Contr. Syst. Technol., Jul. 2008, vol. 16, no. 4, pp. 691–707.Google Scholar
  47. 47.
    Herrmann, G., Turner, M.C., and Postlethwaite, I., Discrete-Time and Sampled-Data Anti-Windup Synthesis: Stability and Performance, Internat. J. Systems Sci., Feb. 2006, vol. 37, no. 2, pp. 91–113.Google Scholar
  48. 48.
    Yee, J.-S., Wang, J.L., and Sundararajan, N., Robust Sampled Data H -Flight Controller Design for High α Stability-Axis Roll Manoeuver, Control Eng. Practice, 2001, vol. 8, pp. 735–747.CrossRefGoogle Scholar
  49. 49.
    Galeani, S., Onori, S., Teel, A.R., and Zaccarian, L., A Magnitude and Rate Saturation Model and Its Use in the Solution of a Static Anti-Windup Problem, Systems Control Lett., Jan. 2008, vol. 57, no. 1, pp. 1–9.Google Scholar
  50. 50.
    Biannic, J., Tarbouriech, S., and Farret, D., A Practical Approach to Performance Analysis of Saturated Systems with Application to Fighter Aircraft Flight Controllers, Proc. 5th IFAC Symposium ROCOND, Toulouse, France, Jul. 2006, http://www.ifac-papersonline.net/Detailed/30006.html.
  51. 51.
    Biannic, J. and Tarbouriech, S., Stability and Performance Enhancement of a Fighter Aircraft Flight Control System by a New Anti-Windup Approach, Proc. 17th IFAC Symp. Automatic Control in Aerospace (ACA 2007), Toulouse, France, 2007, vol. 17, http://www.ifac-papersonline.net/Detailed/38634.html.
  52. 52.
    Biannic, J. and Tarbouriech, S., Optimization and Implementation of Dynamic Anti-Windup Compensators with Multiple Saturations in Flight Control Systems, Control Eng. Practice, 2009, vol. 17, pp. 703–713.CrossRefGoogle Scholar
  53. 53.
    Biannic, J., Roos, C., and Tarbouriech, S., A Practical Method for Fixed-Order Anti-Windup Design, Proc. IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), Pretoria, Aug. 2007, http://www.ifacpapersonline.net/Detailed/38515.html.
  54. 54.
    Roos, C. and Biannic, J., A Convex Characterization of Dynamically Constrained Anti-Windup Controllers, Automatica, Sep. 2008, vol. 44, no. 9, pp. 2449–2452.Google Scholar
  55. 55.
    Van den Berg, R., Pogromsky, A.Y., Leonov, G.A., and Rooda, J.E., Design of Convergent Switched Systems, Group Coordination and Cooperative Control (Lecture Notes in Control and Information Sciences, Pettersen, K.Y. and Gravdahl, J.Y., Eds., Berlin: Springer, 2006, vol. 336, pp. 291–311.CrossRefGoogle Scholar
  56. 56.
    Pogromsky, A., Andrievsky, B., and Rooda, J., Aircraft Flight Control with Convergence-Based Anti-Windup Strategy, in Proc. IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS 09), Samara, Russia: IFAC, Jun. 30, 2009.Google Scholar
  57. 57.
    Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti. Uchebnoe posobie dlya vuzov (Lectures on Mathematical Theory of Stability. Teaching Book for Students), Moscow: Nauka, 1967.Google Scholar
  58. 58.
    Pavlov, A., Pogromsky, A., van de Wouw, N., and Nijmeijer, H., Convergent Dynamics, a Tribute to Boris Pavlovich Demidovich, Systems Control Lett., 2004, vol. 52, pp. 257–261.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Pavlov, A., van de Wouw, N., and Nijmeijer, H., Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach, Boston, MA: Birkhäuser, 2006.MATHGoogle Scholar
  60. 60.
    Van den Berg, R., Pogromsky, A.Y., and Rooda, J.E., Convergent Systems Design: Anti-Windup for Marginally Stable Plants, Proc. 45th IEEE Conf. Decision & Control (CDC 2006), San Diego, CA, USA: IEEE, Piscataway, NJ, Dec. 13–15, 2006, pp. 5441–5446.CrossRefGoogle Scholar
  61. 61.
    Yakubovich, V.A., Method of Matrix Inequalities in Stability Theory of Nonlinear Control Systems. I. Absolute Stability of Induced Oscillations, Avtomat. i Telemekh., 1964, vol. 25, no. 7, pp. 1017–1029.MathSciNetGoogle Scholar
  62. 62.
    Pavlov, A., Pogromsky, A., van de Wouw, N., and Nijmeijer, H., On Convergence Properties of Piecewise Affine Systems, Internat. J. Control, 2007, vol. 80, pp. 1233–1247.MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Pavlov, A., van de Wouw, N., and Nijmeijer, H., Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach, Birkhäuser, 2006.MATHGoogle Scholar
  64. 64.
    Pavlov, A., van de Wouw, N., and Nijmeijer, H., Frequency Response Functions for Nonlinear Convergent Systems, IEEE Trans. Automat. Control, 2007, vol. 52, no. 6, pp. 1159–1165.MathSciNetCrossRefGoogle Scholar
  65. 65.
    Van den Berg, R., Pogromsky, A., and Rooda, J., Well-Posedness and Accuracy of Harmonic Linearization for Lur’e Systems, Proc. 46th IEEE Conf. Decision and Control, New Orleans, USA, 2007.Google Scholar
  66. 66.
    Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems), Moscow: Nauka, 1975.Google Scholar
  67. 67.
    Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley-Interscience, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.MATHGoogle Scholar
  68. 68.
    Pavlov, A., van de Wouw, N., Pogromsky, A., Heertjes, M., and Nijmeijer, H., Frequency Domain Performance Analysis of Nonlinearly Controlled Motion Systems, Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, USA: IEEE, Dec. 12–14, 2007.Google Scholar
  69. 69.
    Pavlov, A., van de Wouw, N., and Nijmeijer, H., Convergent Systems: Analysis and Design, in Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Springer, 2005.Google Scholar
  70. 70.
    Pervoznanskii, A.A., Kurs teorii avtomaticheskogo regulirovaniya. Ucheb. posob. (A Course of Automatic Control Theory. Teaching Book), Moscow: Nauka, 1986.Google Scholar
  71. 71.
    Pogromsky, A.Y., van den Berg, R.A., and Rooda, J.E., Performance Analysis of Harmonically Forced Nonlinear Systems, Proc. 3rd IFAC Workshop on Periodic Control Systems (PSYCO-07), St. Petersburg: IFAC, Aug. 2007, vol. 3.Google Scholar
  72. 72.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Nonunique Equilibrium), Moscow: Nauka, 1978.Google Scholar
  73. 73.
    Gelig, A.Kh., Leonov, G.A., and Fradkov, A.L., Nelineinye sistemy. Chastotnye i matrichnye neravenstva (Nonlinear Systems. Frequency and Matrix Inequalities), Moscow: Fizmatlit, 2008.Google Scholar
  74. 74.
    Aerodinamika, ustoichivost’ i upravlyaemost’ sverkhzvukovykh samoletov (Aerodynamics, Stability and Controllability of Supersonic Aircraft), Byushgens, G.S., Ed., Moscow: Nauka, Fizmatlit, 1998.Google Scholar
  75. 75.
    Bukov, V.N. and Ryabchenko, V.N., Embedding of Systems. Classes of Control Laws, Avtomat. i Telemekh., 2001, no. 4, pp. 11–26.Google Scholar
  76. 76.
    Venkataraman, P., Applied Optimization with MATLAB Programming, Wiley-Interscience, Dec. 2001.Google Scholar
  77. 77.
    Van den Berg, R.A., Performance Analysis of Switching Systems, PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. A. Leonov
    • 1
    • 2
    • 3
    • 4
  • B. R. Andrievskii
    • 1
    • 2
    • 3
    • 4
  • N. V. Kuznetsov
    • 1
    • 2
    • 3
    • 4
  • A. Yu. Pogromskii
    • 1
    • 2
    • 3
    • 4
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  3. 3.University of JyväskyläJyväskyläFinland
  4. 4.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations