Differential Equations

, Volume 48, Issue 9, pp 1258–1271

Landau-Hopf scenario of passage to turbulence in some problems of elastic stability theory

  • A. N. Kulikov
Integral Equations
  • 104 Downloads

Abstract

We consider a boundary value problem for a nonlinear integro-differential equation modeling the vibrations of a pipe transporting a fluid and the vibrations of a thin cylinder in an axisymmetric flow. For the boundary conditions we take the hinge support conditions. We show that the Landau-Hopf scenario of passage to turbulence can be realized in such a problem, whereby stable invariant tori of increasing dimensions are generated as the main bifurcation parameter increases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow, 1988.Google Scholar
  2. 2.
    Drazin, F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti (Introduction to the Theory of Hydrodynamic Stability), Moscow, 2005.Google Scholar
  3. 3.
    Hopf, E., A Mathematical Example Displaying the Features of Turbulence, Comm. Pure. Appl. Math., 1948, no. 1, pp. 303–322.Google Scholar
  4. 4.
    Magnitskii, N.A. and Sidorov, S.V., Novye metody khaoticheskoi dinamiki (New Methods of Chaotic Dynamics), Moscow, 2004.Google Scholar
  5. 5.
    Paidoussis, M.P. and Issid, N.T., Dynamic Stability of Pipes Conveying Fluid, J. Sound Vibration, 1974, no. 33, pp. 267–294.Google Scholar
  6. 6.
    Paidoussis, M.P., Dynamics of Flexible Slender Cylinders in Axial Flow, J. Fluid Mech., 1966, no. 26, pp. 717–736; 737–751.Google Scholar
  7. 7.
    Holmes, P.J., Bifurcation to Divergence and Flutter in Flow-Induced Oscillations: a Finite Dimensional Analysis, J. Sound Vibration, 1977, no. 53, pp. 471–503.Google Scholar
  8. 8.
    Holmes, P.J. and Marsden, J.E., Bifurcations of Dynamical Systems and Nonlinear Oscillators in Engendering Systems, in Nonlinear Partial Differential Equations and Applications, Lecture Notes in Math., no. 648, Berlin, 1978, pp. 163–206.Google Scholar
  9. 9.
    Thompson, J.M.T., Instability and Catastrophes in Science and Engineering, Somerset: Wiley, 1982. Translated under the title Neustoichivost’ i katastrofy v nauke i tekhnike, Moscow, 1985.Google Scholar
  10. 10.
    Feodos’ev, V.I., On Vibrations and Stability of a Pipe When Passing a Liquid through It, Inzhenern. Sb., 1951, vol. 10, pp. 169–170.Google Scholar
  11. 11.
    Yakubov, S.Ya., Solvability of the Cauchy Problem for Abstract Quasilinear Hyperbolic Equations of the Second Order and Their Applications, Tr. Mosk. Mat. Obs., 1970, vol. 23, pp. 37–59.MATHGoogle Scholar
  12. 12.
    Sobolev, S.L., Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis in Mathematical Physics), Leningrad: Leningrad. Gos. Univ., 1950.Google Scholar
  13. 13.
    Neimark, M.A., Lineinye differentsial’nye operatory (Linear Differential Operators), Moscow, 1969.Google Scholar
  14. 14.
    Kato, T., Perturbation Theory for Linear Operators, Berlin, 1966.Google Scholar
  15. 15.
    Mishchenko, E.F., Sadovnichii, V.A., Kolesov, A.Yu., and Rozov, N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei (Autowave Processes in Nonlinear Media with Diffusion), Moscow, 2005.Google Scholar
  16. 16.
    Kolesov, A.Yu., Kulikov, A.N., and Rozov, N.Kh., Invariant Tori of a Class of Point Mappings: Preservation of an Invariant Torus under Perturbations, Differ. Uravn., 2003, vol. 39, no. 6, pp. 738–753.MathSciNetGoogle Scholar
  17. 17.
    Kolesov, A.Yu. and Kulikov, A.N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii (Invariant Tori of Nonlinear Evoltuion Equations), Yaroslavl, 2003.Google Scholar
  18. 18.
    Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funtsional’nogo analiza (Elements of the Function Theory and Functional Analysis), Moscow, 1969.Google Scholar
  19. 19.
    Mikhlin, S.G., Metody matematicheskoi fiziki (Methods of Mathematical Physics), Moscow: Nauka, 1968.Google Scholar
  20. 20.
    Kulikov, A.N., Attractors of Two Boundary Value Problems for a Modified Nonlinear Telegraph Equation, Nelin. Dinam., 2008, vol. 4, no. 1, pp. 57–68.MathSciNetGoogle Scholar
  21. 21.
    Kolesov, A.Yu., Kulikov, A.N., and Rozov, N.Kh., Development of Landau Turbulence in the Multiplicator-Accelerator Model, Dokl. Akad. Nauk, 2008, vol. 420, no. 6, pp. 739–743.MathSciNetMATHGoogle Scholar
  22. 22.
    Kolesov, A.Yu., Rozov, N.Kh., and Sadovnichii, V.A., Mathematical Aspects of the Landau Theory of the Turbulence Development, Uspekhi Mat. Nauk, 2008, vol. 63, no. 2, pp. 21–84.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kulikov, A.N., Landau Turbulence in the Problem on a Tube Flatter, Tez. dokl. X mezhdunar. sem. im. E.S. Pyatnitskogo “Ustoichivost’ i kolebaniya nelineinykh sistem upravleniya” (Abstr. X Int. E.S. Pyatnitskii Sem. “Stability and Oscillations of Nonlinear Control Systems”), Moscow, 2008, pp. 156–158.Google Scholar
  24. 24.
    Kulikov, A.N., Possibility of Realization of the Landau Scenario of Passage to Turbulence in the Problem on Nonlinear Vibrations of a Pipe Conveying a Liquid, Tr. VIII Vseros. konf. “Nelineinye kolebaniya mekhanicheskikh sistem” (Proc. VIII All-Russia Conf. “Nonlinear Oscillations of Mechanical Systems”), Nizhni Novgorod, 2008, vol. 2, pp. 376–380.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. N. Kulikov
    • 1
  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations