Differential Equations

, Volume 48, Issue 9, pp 1236–1244 | Cite as

Optimal boundary control of heat transfer in a one-dimensional material: A hyperbolic model

  • R. K. Romanovskii
  • N. G. Churasheva
Control Theory

Abstract

We consider a boundary value problem describing heat propagation in a rod in the framework of a hyperbolic model of heat transfer. We construct a class, depending on a function parameter, of boundary data (controls) ensuring a given rod temperature distribution at a given time; by using the Lagrange method, from this class, we single out a unique control minimizing a given loss function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romanovskii, R.K., On Riemann Matrices of the First and Second Kind, Dokl. Akad. Nauk SSSR, 1982, vol. 267, no. 3, pp. 577–580.MathSciNetGoogle Scholar
  2. 2.
    Romanovskii, R.K., Riemann Matrices of the First and Second Kind, Mat. Sb., 1985, vol. 127, no. 4, pp. 494–501.MathSciNetGoogle Scholar
  3. 3.
    Romanovskii, R.K., Exponentially Splittable Hyperbolic Systems with Two Independent Variables, Mat. Sb., 1987, vol. 133, no. 3, pp. 341–355.Google Scholar
  4. 4.
    Romanovskii, R.K., The Monodromy Operator of a Hyperbolic System with Periodic Coefficients, in Primenenie metodov funktsional’nogo analiza v zadachakh matematicheskoi fiziki (Application of Methods of Functional Analysis in Problems of Mathematical Physics), Kiev: Inst. Mat., 1987, pp. 47–52.Google Scholar
  5. 5.
    Romanovskii, R.K., Averaging of Hyperbolic Equations, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 2, pp. 286–289.Google Scholar
  6. 6.
    Vorob’eva, E.V. and Romanovskii, R.K., The Method of Characteristics for Hyperbolic Boundary Value Problems in the Plane, Sibirsk. Mat. Zh., 2000, vol. 41, no. 3, pp. 531–540.MathSciNetMATHGoogle Scholar
  7. 7.
    Romanovskii, R.K. and Stratilatova, E.N., Solution of a One-Dimensional Single-Phase Stefan Problem by the Method of Boundary Integral Equations, Sib. Zh. Ind. Mat., 2004, vol. 7, no. 3 (19), pp. 119–131.MathSciNetGoogle Scholar
  8. 8.
    Zhukova, O.G. and Romanovskii, R.K., Boundary Control of the Heat Transfer Process in a One-Dimensional Material: a Hyperbolic Model, Differ. Uravn., 2007, vol. 43, no. 5, pp. 650–654.MathSciNetGoogle Scholar
  9. 9.
    Zhukova, O.G. and Romanovskii, R.K., Two-Sided Boundary Control of Heat Transfer in a One-Dimensional Material: a Hyperbolic Model, Sib. Zh. Ind. Mat., 2007, vol. 10, no. 4 (32), pp. 32–40.MathSciNetMATHGoogle Scholar
  10. 10.
    Zhukova, O.G., Boundary Control of a Hyperbolic System of Heat Equations, Differ. Uravn., 2008, vol. 44, no. 1, pp. 82–88.MathSciNetGoogle Scholar
  11. 11.
    Romanovskii, R.K. and Zhukova, O.G., Boundary Control of the Heat Transfer Process in a Two-Dimensional Material: a Hyperbolic Model, Sib. Zh. Ind. Mat., 2008, vol. 11, no. 3 (35), pp. 119–125.MathSciNetGoogle Scholar
  12. 12.
    Zhukova, O.G., Boundary Control of Heat Transfer in a Three-Dimensional Material: a Hyperbolic Model, Differ. Uravn., 2009, vol. 45, no. 12, pp. 650–654.MathSciNetGoogle Scholar
  13. 13.
    Lions, J.-L., Contrôle optimal de systémes gouvernés par des équations aux dérivées partielles, Paris: Dunod, 1968. Translated under the title Optimal’noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.MATHGoogle Scholar
  14. 14.
    Emanuilov, O.Yu., Boundary Controllability of Hyperbolic Equations, Sibirsk. Mat. Zh., 2000, vol. 41, no. 4, pp. 944–959.MathSciNetMATHGoogle Scholar
  15. 15.
    Arguchintsev, A.V. and Krutikova, O.A., Optimization of Semilinear Hyperbolic Systems with Smooth Boundary Controls, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 2, pp. 10–17.Google Scholar
  16. 16.
    Arguchintsev, A.V., Optimization of Hyperbolic Systems with Integral Constraints on the Boundary Controls, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1, pp. 10–17.Google Scholar
  17. 17.
    Il’in, V.A. and Moiseev, E.I., Optimal Boundary Control of Displacement at One End of a String with the Second End Fixed, and the Corresponding Distribution of the Total Energy of the String, Dokl. Akad. Nauk, 2004, vol. 399, no. 6, pp. 727–731.MathSciNetGoogle Scholar
  18. 18.
    Il’in, V.A. and Moiseev, E.I., Optimal Boundary Control of Displacement at Two Ends, and the Corresponding Distribution of the Total Energy of the String, Dokl. Akad. Nauk, 2005, vol. 400, no. 1, pp. 16–20.MathSciNetGoogle Scholar
  19. 19.
    Il’in, V.A. and Moiseev, E.I., Optimal Boundary Control of Displacement at One End of a String with the Second One Fixed, and the Corresponding Total Energy of the String, Dokl. Akad. Nauk, 2005, vol. 400, no. 5, pp. 585–591.MathSciNetGoogle Scholar
  20. 20.
    Il’in, V.A. and Moiseev, E.I., Optimal Boundary Control of an Elastic Force at One End with the Second End Fixed, and the Corresponding Distribution of the Total Energy of the String, Dokl. Akad. Nauk, 2005, vol. 400, no. 6, pp. 731–735.MathSciNetGoogle Scholar
  21. 21.
    Korneev, S.A., Hyperbolic Heat Equations, Izv. Ross. Akad. Nauk Energ., 2001, no. 4, pp. 117–125.Google Scholar
  22. 22.
    Kartashov, E.M. and Remizova, O.I., New Integral Relations of the Theory of Nonstationary Heat Transfer on the Basis of an Equation of Hyperbolic Type, Izv. Ross. Akad. Nauk Energ., 2002, no. 3, pp. 146–156.Google Scholar
  23. 23.
    Burakhanov, B.M., Lyutikova, E.N., and Medin, S.A., Hyperbolic Heat Transfer and the Second Law of Thermodynamics, Preprint OIVTRAN, Moscow, 2002, no. 2–462.Google Scholar
  24. 24.
    Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.MATHGoogle Scholar
  25. 25.
    Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Moskov. Gos. Univ., 1999.Google Scholar
  26. 26.
    Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • R. K. Romanovskii
    • 1
  • N. G. Churasheva
    • 1
  1. 1.Omsk State Technical UniversityOmskRussia

Personalised recommendations