Differential Equations

, Volume 48, Issue 9, pp 1197–1211 | Cite as

Problem for the diffusion equation outside cuts on the plane with the Dirichlet condition and an oblique derivative condition on opposite sides of the cuts

  • P. A. Krutitskii
  • K. V. Prozorov
Partial Differential Equations
  • 73 Downloads

Abstract

We consider a boundary value problem for the stationary diffusion equation outside cuts on the plane. The Dirichlet condition is posed on one side of each cut, and an oblique derivative condition is posed on the other side. We prove existence and uniqueness theorems for the solution of the boundary value problem. We obtain an integral representation of a solution in the form of potentials. The densities of these potentials are found from a system of Fredholm integral equations of the second kind, which is uniquely solvable. We obtain closed asymptotic formulas for the gradient of the solution of the boundary value problem at the endpoints of the cuts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krutitskii, P.A. and Prozorov, K.V., On a Problem for the Helmholtz Equation Outside Cuts on the Plane with the Dirichlet Conditions and the Oblique Derivative Condition on Opposite Sides of the Cuts, Differential Equations, 2011, vol. 47, no. 9, pp. 1281–1296.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Krutitskii, P.A., The Dirichlet problem for the Helmholtz Equation in the Exterior of Cuts in the Plane, Comput. Maths. Math. Phys., 1994, vol. 34, no. 8–9, pp. 1073–1090.MathSciNetMATHGoogle Scholar
  3. 3.
    Krutitskii, P.A., The Neumann Problem for the Helmholtz Equation in the Exterior of Cuts in the Plane, Comput. Maths. Math. Phys., 1994, vol. 34, no. 11, pp. 1421–1431.MathSciNetMATHGoogle Scholar
  4. 4.
    Krutitskii, P.A., A Mixed Problem for the Helmholtz Equation in a Multiply Connected Domain, Comput. Maths. Math. Phys., 1996, vol. 36, no. 8, pp. 1087–1095.MathSciNetMATHGoogle Scholar
  5. 5.
    Krutitskii, P.A., A Mixed Problem for the Helmholtz Equation Outside Cuts on the Plane, Differential Equations, 1996, vol. 32, no. 9, pp. 1204–1212.MathSciNetMATHGoogle Scholar
  6. 6.
    Krutitskii, P.A. and Prozorov, K.V., The Dirichlet-Neumann Problem for the Helmholtz Equation Outside Cuts on the Plane, Doklady Mathematics, 2004, vol. 70, no. 2, pp. 765–769.Google Scholar
  7. 7.
    Krutitskii, P.A. and Sgibnev, A.I., Mixed Problem for the Laplace Equation Outside Cuts in a Plane with Setting Dirichlet and Skew Derivative Conditions on Different Sides of the Cuts, Quart. Appl. Math., 2006, vol. 64, no. 1, pp. 105–136.MathSciNetMATHGoogle Scholar
  8. 8.
    Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1981 (in Russian). Engl. transl.: Moscow: Mir, 1984.Google Scholar
  9. 9.
    Nikiforov, A.F. and Uvarov, V.B., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow: Nauka, 1984 (in Russian). Engl. transl.: Basel: Birkhäuser, 1988.Google Scholar
  10. 10.
    Muskhelishvili, N.I., Singulyarnye integral’nye uravneniya (Singular Integral Equations), Moscow: Nauka, 1968 (in Russian). Engl. transl.: Groningen: Nordhoff, 1972.MATHGoogle Scholar
  11. 11.
    Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of Function Theory and Functional Analysis), Moscow, 1972 (in Russian). Engl. transl.: New York: Dover, 1999.Google Scholar
  12. 12.
    Funktsional’nyi analiz (Functional Analysis), Krein, S.G., Ed., Moscow: Nauka, 1964 (in Russian). Engl. transl.: Groningen: Nordhoff, 1972.Google Scholar
  13. 13.
    Kantorovich, A.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1984 (in Russian). Engl. transl.: Oxford: Pergamon, 1982.Google Scholar
  14. 14.
    Trenogin, V.A., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1980 (in Russian). French transl.: Moscow: Mir, 1985.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • P. A. Krutitskii
    • 1
    • 2
  • K. V. Prozorov
    • 1
    • 2
  1. 1.Institute for Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.University of the Russian Academy of EducationMoscowRussia

Personalised recommendations