Differential Equations

, Volume 48, Issue 8, pp 1137–1152

Version of the homogenized Bakhvalov-Eglit model with kinetic equation for the evolution of oscillations

  • S. A. Sazhenkov
Partial Differential Equations


We consider the one-dimensional model of the dynamics of a viscous barotropic gas with rapidly oscillating initial distributions of the specific volume. We rigorously justify the homogenization procedure as the frequency of rapid oscillations tends to infinity. We construct a closed limit effective model of the gas motion containing an additional kinetic equation that carries complete information on the evolution of the limit oscillation modes. We show that if the initial data are periodic, then the constructed limit model can be reduced to a system of quasi-homogenized Bakhvalov-Eglit equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amosov, A.A. and Zlotnik, A.A., Solvability “in the Large” of a Class of Quasilinear Systems of Equations of Composite Type with Nonsmooth Data, Differ. Uravn., 1994, vol. 30, no. 4, pp. 596–609.MathSciNetGoogle Scholar
  2. 2.
    Bakhvalov, N.S. and Eglit, M.E., Processes in Periodic Media Not Describable in Terms of Mean Characteristics, Dokl. Akad. Nauk SSSR, 1983, vol. 268, no. 4, pp. 836–840.MathSciNetGoogle Scholar
  3. 3.
    Amosov, A.A. and Zlotnik, A.A., On Quasi-Homogenized Equations of the One-Dimensional Motion of a Viscous Barotropic Medium with Rapidly Oscillating Data, Zh. Vychisl. Mat. Mat. Fiz., 1996, vol. 36, no. 2, pp. 87–110.MathSciNetGoogle Scholar
  4. 4.
    Malek, J., Nečas, J., Rokyta, M., and Ružička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs, London, 1996.Google Scholar
  5. 5.
    Warga, J., Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami (Optimal Control of Differential and Functional Equations), Moscow, 1977.Google Scholar
  6. 6.
    Kamke, E.W.H., Differentialgleichungen, Leipzig, 1959. Translated under the title Spravochnik po obyknovennym differentsial’nym uravneniyam, Moscow, 1981.Google Scholar
  7. 7.
    Sansone, G., Equazioni differenziali nel campo reale, Pt. 1, Bologna, 1948. Translated under the title Obyknovennye differentsial’nye uravneniya, T. 2, Moscow: Inostrannay Literatura, 1954.Google Scholar
  8. 8.
    Truesdell, C., First Course in Rational Continuum Mechanics, Boltimore (USA): The John Hopkins University, 1972. Translated under the title Pervonachal’nyi kurs ratsional’noi mekhaniki sploshnykh sred, Moscow: Mir, 1975.Google Scholar
  9. 9.
    Courant, R. and Hilbert, H., Methods of Mathematical Physics, London, 1948. Translated under the title Metody matematicheskoi fiziki, Moscow, 1951.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. A. Sazhenkov
    • 1
  1. 1.Lavrentyev Institute of HydrodynamicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations