Differential Equations

, Volume 48, Issue 8, pp 1127–1136

On a boundary value problem with shift for an equation of mixed type in an unbounded domain

  • O. A. Repin
  • S. K. Kumykova
Partial Differential Equations

Abstract

We study the unique solvability of a problem with shift for an equation of mixed type in an unbounded domain. We prove the uniqueness theorem under inequality-type constraints for known functions for various orders of the fractional differentiation operators in the boundary condition. The existence of a solution is proved by reduction to a Fredholm equation of the second kind, whose unconditional solvability follows from the uniqueness of the solution of the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hardy, G. and Littlewood, J., Some Properties of Fractional Integrals, Math. Z., 1928, vol. 27, no. 4, pp. 565–606.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Kumykova, S.K., A Problem with Nonlocal Boundary Conditions on the Characteristics for an Equation of Mixed Type, Differ. Uravn., 1974, vol. 10, no. 1, pp. 78–88.MathSciNetMATHGoogle Scholar
  3. 3.
    Denisova, Z.G., A Boundary Value Problem with Shift for the Equation sgn y × |y|m u xx + u yy = 0 in an Unbounded Domain, Differ. Uravn., 1978, vol. 14, no. 1, pp. 170–173.MathSciNetMATHGoogle Scholar
  4. 4.
    Nakhushev, A.M., On Some Boundary Value Problems for Hyperbolic Equations and Equations of the Mixed Type, Differ. Uravn., 1969, vol. 5, no. 1, pp. 44–59.MATHGoogle Scholar
  5. 5.
    Tricomi, F., Lezioni sulle equazioni a derivate parziali, Turin, 1954. Translated under the title Lektsii po uravneniyam v chastnykh proizvodnykh, Moscow: Inostrannaya literatura, 1957.Google Scholar
  6. 6.
    Bitsadze, A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.Google Scholar
  7. 7.
    Lebedev, N.N., Spetsial’nye funktsii i ikh prilozheniya (Special Functions and Their Applications), Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit., 1963.Google Scholar
  8. 8.
    Smirnov, M.M., Vyrozhdayushchiesya ellipticheskie i giperbolicheskie uravneniya (Degenerating Elliptic and Hyperbolic Equations), Moscow: Nauka, 1966.MATHGoogle Scholar
  9. 9.
    Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Fractional Integrals and Derivatives and Some of Their Applications), Minsk: Nauka i Tekhnika, 1987.MATHGoogle Scholar
  10. 10.
    Smirnov, M.M., Uravneniya smeshannogo tipa (Equations of Mixed Type), Moscow: Vyssh. Shkola, 1985.Google Scholar
  11. 11.
    Muskhelishvili, N.I., Singulyarnye integral’nye uravneniya (Singular Integral Equations), Moscow: Nauka, 1968.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. A. Repin
    • 1
    • 2
  • S. K. Kumykova
    • 1
    • 2
  1. 1.Samara State Economic UniversitySamaraRussia
  2. 2.Kabardino-Balkar State UniversityNalchikRussia

Personalised recommendations