Differential Equations

, Volume 48, Issue 8, pp 1103–1111 | Cite as

Stieltjes differential method in the modeling of an irregular system on a geometric graph

  • Yu. V. Pokornyi
  • M. B. Zvereva
  • Zh. I. Bakhtina
Ordinary Differential Equations
  • 64 Downloads

Abstract

We analyze a SD-equation on a graph from the viewpoint of variational laws and generalize the mathematical modeling on space grids to the case of an irregular object. We take into account the possible appearance of the delta-function phenomenon even at the grid nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pokornyi, Yu.V., Penkin, O.M., Pryadiev, V.L., et al., Differentsial’nye uravneniya na geometricheskikh grafakh (Differential Equations on Geometric Graphs), Moscow: Fiziko-Matematicheskaya Literatura, 2005.Google Scholar
  2. 2.
    Kuchment, P., Quantum Graphs I. Some Basic Structures, Waves Random Media, 2004, vol. 14, pp. S107–S128.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Pokornyi, Yu.V., Zvereva, M.B., and Bakhtina, Zh.I., Stieltjes Differentials on Geometric Graphs, Dokl. Akad. Nauk, 2008, vol. 423, no. 4, pp. 452–454.MathSciNetGoogle Scholar
  4. 4.
    Dunford, N. and Schwartz, J., Linear Operators. General Theory, New York, 1958. Translated under the title Lineinye operatory. T. 1. Obshchaya teoriya, Moscow: Inostrannaya Literatura, 1962.Google Scholar
  5. 5.
    Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.Google Scholar
  6. 6.
    Saks, S., Teoriya integrala (Theory of Integral), Moscow, 1949.Google Scholar
  7. 7.
    Riesz, F. and Sz.-Nagy, B., Leçons d’analyse fonctionelle, Budapest: Académiai Kiadó, 1977. Translated under the title Lektsii po funktsional’nomu analizu, Moscow: Mir, 1977.Google Scholar
  8. 8.
    Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. 1, New York: Academic, 1953. Translated under the title Metody matematicheskoi fiziki. I, Moscow, 1951.Google Scholar
  9. 9.
    Pokonyi, Yu.V., Zvereva, M.B., and Shabrov, S.A., Sturm-Liouville Oscillation Theory for Impulsive Problems, Uspekhi Mat. Nauk, 2008, vol. 63, no. 1 (379), pp. 111–154.CrossRefGoogle Scholar
  10. 10.
    Pokornyi, Yu.V., Bakhtina, Zh.I., Zvereva, M.B., and Shabrov, S.A., Ostsillyatsionnyi metod Shturma v spektral’nykh zadachakh (Sturm Oscillation Method in Spectral Problems), Moscow, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. V. Pokornyi
    • 1
  • M. B. Zvereva
    • 1
  • Zh. I. Bakhtina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations