Advertisement

Differential Equations

, Volume 48, Issue 3, pp 372–378 | Cite as

On a class of initial-boundary value problems for equations of Korteweg-de Vries type

  • S. I. Pokhozhaev
Partial Differential Equations

Abstract

We consider a special class of initial-boundary value problems on the positive halfline x > 0 for the Korteweg-de Vries equation and its generalizations. For this class, we prove theorems on the nonexistence of global solutions for t > 0.

Keywords

Cauchy Problem Global Solution Initial Function Vries Equation Weight Sobolev Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bona, J.L., Sun, S.M., and Zhang, B.-Y., Boundary Smoothing Properties of the Korteweg-de Vries Equation in a Quarter Plane and Applications, Dyn. Partial Differ. Equat., 2001, vol. 3, no. 1, pp. 1–68.MathSciNetGoogle Scholar
  2. 2.
    Bona, J.L., Sun, S.M., and Zhang, B.-Y., A Non-Homogeneous Boundary Value Problem for the Korteweg-de Vries Equation in a Quarter Plane, Trans. Amer. Math. Soc., 2001, vol. 354, no. 2, pp. 427–490.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bona, J.L., Sun, S.M., and Zhang, B.-Y., Forced Oscillation of a Damped Korteweg-de Vries Equation in a Quarter Plane, Commun. Contemp. Math., 2003, vol. 5, no. 2, pp. 369–400.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Collander, J. E. and Kenig, C.E., The Generalized Korteweg-de Vries Equation on the Half-Line, 2006, pp. 1–69, arXiv: math/0111294v3 [math.AP].Google Scholar
  5. 5.
    Fokas, A.S. and Lenells, J., Explicit Solution Asymptotics for the Korteweg-de Vries Equation on the Half-Line, Nonlinearity, 2010, vol. 23, pp. 937–976.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Holmer, J., Problem for the Korteweg-de Vries Equation, Comm. Partial Differential Equations, 2010, vol. 31, no. 8, pp. 1130–1151.Google Scholar
  7. 7.
    Leach, J.A., The Large-Time Development of the Solution to an Initial-Boundary Value Problem for the Korteweg-de Vries Equation. I. Steady State Solutions, J. Differential Equations, 2009, vol. 246, no. 9, pp. 3681–3703.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Leach, J.A., A Large-Time Development of the Solution to an Initial-Boundary Value Problem for the Korteweg-de Vries Equation. II. Expansion Wave Solutions, Q. J. Mech. Appl. Math., 2010, vol. 63, no. 4, pp. 573–588.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lenares, F. and Pazolo, A.F., Asymptotic Behavior of the Korteweg-de Vries Equation in a Quarter Plane, J. Differential Equations, 2009, vol. 246, pp. 1342–1353.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pazolo, A.F. and Rosier, L., Uniform Stabilization in Weighted Sobolev Spaces for the KdV Equation Posed on the Half-Line, 2010, pp. 1–26, arXiv:1002.1127v1 [math.AP].Google Scholar
  11. 11.
    Rosier, L., Exact Boundary Controllability for the Linear Korteweg-de Vries Equation on the Half-Line, SIAM J. Control Optim., 2000, vol. 39, no. 2, pp. 331–351.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mitidieri, E. and Pokhozhaev, S.I., A Priori Estimates and the Nonexistence of Solutions of Nonlinear Partial Differential Equations and Inequalities, Tr. Mat. Inst. Steklova, 2001, vol. 234, pp. 3–383.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. I. Pokhozhaev
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations