Differential Equations

, Volume 47, Issue 6, pp 778–786 | Cite as

Multipoint boundary value problem for the Lyapunov equation in the case of strong degeneration of the boundary conditions

  • A. N. Bondarev
  • V. N. Laptinskii
Ordinary Differential Equations


We obtain sufficient coefficient conditions for the unique solvability of a multipoint boundary value problem for the Lyapunov matrix differential equation in the case of strong degeneration of the boundary conditions. We suggest an efficient algorithm for constructing the solution.


Unique Solvability Matrix Relation Constructive Method Lyapunov Equation Contraction Mapping Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eshukov, L.N., On a Functional Problem for Ordinary Differential Equations, Uspekhi Mat. Nauk, 1958, vol. 13, no. 3 (81), pp. 191–196.Google Scholar
  2. 2.
    Eshukov, L.N., Vekov, A.A., and Stepanov, A.N., Problems and Bibliography for the Theory of Boundary Value Problems for Ordinary Differential Equations, Tr. Ryazan. Radiotekhn. Inst., 1972, no. 42, pp. 164–192.Google Scholar
  3. 3.
    Gudkov, V.V., Klokov, Yu.A., Lepin, A.Ya., and Ponomarev, V.D., Dvukhtochechnye kraevye zadachi dlya obyknovennykh differentsial’nykh uravnenii (Two-Point Boundary Value Problems for Ordinary Differential Equations), Riga: Zinatne, 1973.Google Scholar
  4. 4.
    Zubov, V.I., Lektsii po teorii upravleniya (Lectures in Control Theory), Moscow: Nauka, 1975.zbMATHGoogle Scholar
  5. 5.
    Boichuk, A.A., Konstruktivnye metody analiza kraevykh zadach (Constructive Methods in the Analysis of Boundary Value Problems), Kiev: Naukova Dumka, 1990.Google Scholar
  6. 6.
    Kiguradze, I.T., Boundary Value Problems for Systems of Ordinary Differential Equations, Itogi Nauki Tekhn., 1987, vol. 30, pp. 3–103.MathSciNetGoogle Scholar
  7. 7.
    Laptinskii, V.N., Konstruktivnyi analiz upravlyaemykh kolebatel’nykh sistem (Constructive Analysis of Controlled Oscillation Systems), Minsk, 1998.Google Scholar
  8. 8.
    Samoilenko, A.M., Laptinskii, V.N., and Kenzhebaev, K.K., Konstruktivnye metody issledovaniya periodicheskikh i mnogotochechnykh kraevykh zadach (Constructive Methods in the Investigation of Periodic and Multipoint Boundary Value Problems), Kiev: Inst. Mat., 1999.Google Scholar
  9. 9.
    Samoilenko, A.M. and Ronto, N.I., Chislenno-analiticheskie metody v teorii kraevykh zadach obyknovennykh differentsial’nykh uravnenii (Numerical-Analytic Methods in the Theory of Boundary Value Problems for Ordinary Differential Equations), Kiev: Naukova Dumka, 1992.Google Scholar
  10. 10.
    Murty, K.N., Howell, G.W., and Sivasundaram, S., Two (Multi) Point Nonlinear Lyapunov Systems Existence and Uniqueness, J. Math. Anal. Appl., 1992, vol. 167, pp. 505–515.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Laptinskii, V.N. and Bondarev, A.N., Constructive Analysis of a Multipoint Boundary Value Problem for a Lyapunov Matrix Differential Equation in the Nondegenerate Case, Preprint Inst. Tekhnol. Met., Mogilev, 2009, no. 13.Google Scholar
  12. 12.
    Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Nauka, 1967.zbMATHGoogle Scholar
  13. 13.
    Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1977.Google Scholar
  14. 14.
    Bibikov, Yu.N., Kurs obyknovennykh differentsial’nykh uravnenii (Course of Ordinary Differential Equations), Moscow, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. N. Bondarev
    • 1
  • V. N. Laptinskii
    • 1
  1. 1.Institute of Technology of MetalsNational Academy of SciencesMogilevBelarus

Personalised recommendations