Advertisement

Differential Equations

, Volume 46, Issue 1, pp 8–16 | Cite as

Aleksandr Andreevich Shestakov (A tribute in honor of his ninetieth birthday)

  • V. V. Amel’kin
  • O. V. Druzhinina
  • Yu. G. Evtushenko
  • I. V. Gaishun
  • E. A. Grebenikov
  • A. V. Gulin
  • V. A. Il’in
  • N. A. Izobov
  • V. V. Kozlov
  • N. A. Severtsev
  • T. K. Shemyakina
  • V. N. Shchennikov
Members of Scientific Community
  • 39 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of Publications by A.A. Shestakov

2000

  1. On the Structure of an Attractor That Is Stable in the Sense of Lyapunov (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 371, no. 6, pp. 770–772.Google Scholar
  2. On Asymptotic Properties of Solutions in a Generalized Problem on Numerous Bodies (together with Druzhinina, O.V.), Tez. dokl. XXXVI Vseros. nauch. konf. po problemam matematiki, fiziki, khimii i metodiki prepodavaniya estestvenno-nauchnykh distsiplin (Abstr. XXXVI All-Russia Sci. Conf. on Problems of Mathematics, Physics, Chemistry, and Education Methods of Natural Science), Moscow: Peoples’ Friendship Univ. of Russia, p. 21.Google Scholar

2001

  1. On the Uniform Stability of the Equilibrium State of a Differential Equation That Depends on a Multidimensional Parameter (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 377, no. 4, pp. 458–487.Google Scholar
  2. On the Extension of the Concept of the Orbital Stability of Trajectories of a Dynamical System (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 377, no. 5, pp. 621–625.Google Scholar
  3. Qualitative Investigation of Integral Manifolds of the Duffing Equation (together with Druzhinina, O.V. and Zakharova, M.V.), Vestn. RUDN Prikl. Mat. i Inform., no. 1, pp. 121–127.Google Scholar
  4. On the Orbital Stability of Periodic Trajectories of Some Classes of Dynamical Systems (together with Druzhinina, O.V.), Izv. RAEN Differ. Uravn., no. 5, pp. 189–191.Google Scholar
  5. Asymptotic Strength of Trajectories on the Basis of Strength Exponents (together with Druzhinina, O.V.), in Issledovanie ustoichivopodobnykh i prochnostnykh svoistv dinamicheskikh transportnykh sistem: Mezhvuz. sb. nauchn. trudov (Investigation of Stability-Like and Strength Properties of Dynamical Transport Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 23–25.Google Scholar
  6. On the Strength in the First Approximation for a Proper Configuration of Relative Equilibrium States in the Problem with Numerous Bodies (together with Druzhinina, O.V.), Tez. dokl. XXXVII Vseros. nauch. konf. po problemam matematiki, fiziki, khimii i metodiki prepodavaniya estestvenno-nauchnykh distsiplin (Abstr. XXXVII All-Russia Sci. Conf. on Problems of Mathematics, Physics, Chemistry, and Education Methods of Natural Science), Moscow: Peoples’ Friendship Univ. of Russia, pp. 51–52.Google Scholar
  7. On the Zhukovskii Strength of Trajectories of the Duffing Equation (together with Druzhinina, O.V.), in Sb. nauchn. trudov po materialam Mezhdunar. konf. “Vysshee professional’noe zaochnoe obrazovanie na zheleznodorozhnom transporte: nastoyashchee i budushchee” (Collection of Scientific Works on the Basis of Proc. Int. Conf. “Higher Education by Correspondence on Railway Transport: The Present and Future”), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 465–466.Google Scholar
  8. On Strength Properties of the General System “Input-Output” (together with Druzhinina, O.V.), in Sb. nauchn. trudov po materialam Mezhdunar. konf. “Vysshee professional’noe zaochnoe obrazovanie na zheleznodorozhnom transporte: nastoyashchee i budushchee” (Collection of Scientific Works on the Basis of Proc. Int. Conf. “Higher Education by Correspondence on Railway Transport: The Present and Future”), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 466–467.Google Scholar
  9. On the Distant Education of the Discipline “Discrete Mathematics” (together with Druzhinina, O.V.), in Sb. nauchn. trudov po materialam Mezhdunar. konf. “Vysshee professional’noe zaochnoe obrazovanie na zheleznodorozhnom transporte: nastoyashchee i budushchee” (Collection of Scientific Works on the Basis of Proc. Int. Conf. “Higher Education by Correspondence on Railway Transport: The Present and Future”), Moscow: Rus. State Open Techn. Univ. of Railway Transport, p. 494.Google Scholar
  10. Diskretnaya matematika. Rabochaya programma i zadanie na kontrol’nuyu rabotu s metodicheskimi ukazaniyami dlya studentov 2 kursa spets. 071900 “Informatsionnye sistemy” i 220100 “Vychislitel’nye kompleksy, sistemy i seti” (Discrete Mathematics. Working Book and Tests with Methodical Recommendations for Second-Year Students of the Specialities 071900 “Informational Systems” and 220100 “Computational Complexes, Systems, and Nets”) (together with Druzhinina, O.V.), Moscow: Rus. State Open Techn. Univ. of Railway Transport, p. 38.Google Scholar

2002

  1. The Generalized Direct Lyapunov Method for Investigating Stability and Attraction for General Nonautonomous Systems (together with Druzhinina, O.V.), Mat. Sb., vol. 193, no. 10, pp. 17–48.Google Scholar
  2. On the Preservation of the Property of Asymptotic Stability in the Sense of Zhukovskii of an Integral Set under Perturbations of a Nonlinear Differential Equation (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 384, no. 1, pp. 52–56.Google Scholar
  3. On Properties of Motions in a Generalized Problem of Many Bodies (together with Druzhinina, O.V.), in Voprosy ustoichivosti, prochnosti i upravlyaemosti dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Problems of Stability, Strength, and Controllability of Dynamical Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 43–49.Google Scholar
  4. Methods of Strength Investigation in the Zhukovskii Sense for Trajectories of Nonlinear Dynamical Systems (together with Druzhinina, O.V.), Tez. dokl. II mezhdunar. kongressa “Nelineinyi dinamicheskii analiz-2002” (Abstr. II Int. Cong. “Nonlin. Dyn. Analysis-2002”), Moscow: Moscow Aviat. Inst., p. 52.Google Scholar
  5. Problems of Strength of Trajectories in Relativistic Celestial Mechanics (together with Druzhinina, O.V.), Tez. dokl. XXXVIII Vseros. nauch. konf. po problemam matematiki, fiziki, khimii i metodiki prepodavaniya estestvenno-nauchnykh distsiplin (Abstr. XXXVIII All-Russia Sci. Conf. on Problems of Mathematics, Physics, Chemistry, and Education Methods of Natural Science), Moscow: Peoples’ Friendship Univ. of Russia, p. 43.Google Scholar
  6. On the Strength of Trajectories in the Problem of Two Bodies (together with Druzhinina, O.V.), Tez. dokl. XXXVIII Vseros. nauch. konf. po problemam matematiki, fiziki, khimii i metodiki prepodavaniya estestvenno-nauchnykh distsiplin (Abstr. XXXVIII All-Russia Sci. Conf. on Problems of Mathematics, Physics, Chemistry, and Education Methods of Natural Science), Moscow: Peoples’ Friendship Univ. of Russia, pp. 55–56.Google Scholar

2003

  1. Conditions for Stability in the Sense of Zhukovskii of Trajectories of Dynamical Systems (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 393, no. 4, pp. 478–482.Google Scholar
  2. Stability and Strength of the Motion of Deterministic Dynamical Systems of Railway Transport (together with Druzhinina, O.V.), Transport: Nauka, Tekhnika, Upravl., no. 12, pp. 10–15.Google Scholar
  3. On the Practical Stability of the Set of Solutions of Difference Equations (together with Golechkov, Yu.I.), in Metody issledovaniya tekhnicheskoi ustoichivosti i kachestvennykh svoistv sistem zheleznodorozhnogo transporta (Research Methods for the Technical Stability and Qualitative Properties of Systems of Railway Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 17–19.Google Scholar
  4. On Stability Condition of a Given Subset with Respect to Another Given Subset of the Phase Space (together with Druzhinina, O.V.), in Metody issledovaniya tekhnicheskoi ustoichivosti i kachestvennykh svoistv sistem zheleznodorozhnogo transporta (Research Methods for the Technical Stability and Qualitative Properties of Systems of Railway Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 19–23.Google Scholar
  5. On the Qualitative Investigation of the Equation of the Motion of a Railway Carrier (together with Druzhinina, O.V.), in Metody issledovaniya tekhnicheskoi ustoichivosti i kachestvennykh svoistv sistem zheleznodorozhnogo transporta (Research Methods for the Technical Stability and Qualitative Properties of Systems of Railway Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 38–44.Google Scholar
  6. On the Technical Stability of the Phase Set in a Nonstationary Dynamical System (together with Druzhinina, O.V. and Zakharova, M.V.), in Metody issledovaniya tekhnicheskoi ustoichivosti i kachestvennykh svoistv sistem zheleznodorozhnogo transporta (Research Methods for the Technical Stability and Qualitative Properties of Systems of Railway Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 60–62.Google Scholar
  7. On the Property of Solutions of a Generalized Equation of the Motion of a Railway Carrier (together with Druzhinina, O.V.), in Metody issledovaniya tekhnicheskoi ustoichivosti i kachestvennykh svoistv sistem zheleznodorozhnogo transporta (Research Methods for the Technical Stability and Qualitative Properties of Systems of Railway Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 76–78.Google Scholar
  8. Algorithm of the Numerical Solution of the Lyapunov Matrix Equation (together with Golechkov, Yu.I.), in Sovremennye problemy sovershenstvovaniya raboty zheleznodorozhnogo transporta: Mezhvuz. sb. nauchn. trudov (Modern Problems of the Improvement of the Operation of the Railway Transport. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 214–216.Google Scholar
  9. On the Wagging of a Railway Trolley in a Track (together with Zakharova, M.V. and Druzhinina, O.V.), in Sovremennye problemy sovershenstvovaniya raboty zheleznodorozhnogo transporta: Mezhvuz. sb. nauchn. trudov (Modern Problems of the Improvement of the Operation of the Railway Transport. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 241–245.Google Scholar
  10. On the Optimization of Design Parameters of a Railway Carrier (together with Golechkov, Yu.I.), in Sb. dokl. nauchno-prakt. konf. “Sovremennye problemy vzaimodeistviya podvizhnogo sostava i puti” (“Koleso-rel’s 2003”) (Proc. Sci.-Pract. Cong. “Modern Problems of the Interaction of the Rolling Stock and Railway” (“Wheel-Rail 2003”)), Moscow: VNIIZhT, pp. 149–150.Google Scholar
  11. On the Transverse Stability of the Motion of a Railway Carrier (together with Druzhinina, O.V. and Cherkashin, Yu.M.), in Sb. dokl. nauchno-prakt. konf. “Sovremennye problemy vzaimodeistviya podvizhnogo sostava i puti” (“Koleso-rel’s 2003”) (Proc. Sci.-Pract. Cong. “Modern Problems of the Interaction of the Rolling Stock and Railway” (“Wheel-Rail 2003”)), Moscow: VNIIZhT, pp. 176–177.Google Scholar

2004

  1. On the Stability in the Zhukovskii Sense of Almost Periodic Trajectories and the Properties of Limit Motions of Dynamical Systems (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 398, no. 5, pp. 614–619.Google Scholar
  2. Stability of the Motion of Fuzzy Dynamical Systems of the Railway Transport (together with Druzhinina, O.V. and Merenkov, Yu.N.), Transport: Nauka, Tekhnika, Upravl., no. 2, pp. 6–9.Google Scholar
  3. Investigation of the Transverse Stability and Velocity Optimization of a Railway Carrier (together with Golechkov, Yu.I.), Transport: Nauka, Tekhnika, Upravl., no. 4, pp. 8–11.Google Scholar
  4. On Stability Conditions for the Motion of a Railway Wheel Pair (together with Druzhinina, O.V. and Shchennikova, E.V.), NTT—Nauka Tekhn. Transp., no. 2, pp. 68–72.Google Scholar
  5. Analysis of the Transverse Stability of a High-Velocity Rail Carrier (together with Druzhinina, O.V.), in Kachestvennoe issledovanie i ustoichivost’ matematicheskikh modelei transportnykh dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative Investigation and Stability of Mathematical Models of Transport Dynamical Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 26–33.Google Scholar
  6. On the Mathematical Modelling of Mathematical Objects (together with Merenkov, Yu.N.), in Kachestvennoe issledovanie i ustoichivost’ matematicheskikh modelei transportnykh dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative Investigation and Stability of Mathematical Models of Transport Dynamical Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 49–53.Google Scholar
  7. On Necessary and Sufficient Conditions for the Stability on a Finite Time Interval (together with Cherkashin, Yu.M.), in Kachestvennoe issledovanie i ustoichivost’ matematicheskikh modelei transportnykh dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative Investigation and Stability of Mathematical Models of Transport Dynamical Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 66–70.Google Scholar
  8. On Vertical Oscillations During the Motion of a Carrier on a Rough Random Way (together with Golechkov, Yu.I.), in Kachestvennoe issledovanie i ustoichivost’ matematicheskikh modelei transportnykh dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative Investigation and Stability of Mathematical Models of Transport Dynamical Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 79–84.Google Scholar
  9. Characteristics of the Maple Program in the Problem on the Motion of a Car on a Rough Rail Way (together with Golechkov, Yu.I.), in Matematicheskoe modelirovanie transportnykh dinamicheskikh sistem: ustoichivost’ i kachestvennyi analiz: Mezhvuz. sb. nauchn. trudov (Mathematical Modelling of Transport Dynamical Systems: Stability and Qualitative Analysis. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 23–26.Google Scholar
  10. On the Specific Strength of Almost Periodic Trajectories of Mechanical Systems with Numerous Degrees of Freedom (together with Druzhinina, O.V.), in Matematicheskoe modelirovanie transportnykh dinamicheskikh sistem: ustoichivost’ i kachestvennyi analiz: Mezhvuz. sb. nauchn. trudov (Mathematical Modelling of Transport DynamicalSystems: Stability and Qualitative Analysis. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 27–30.Google Scholar
  11. On the Motion of a Wheel Pair on a Railway with Regard of Rail Roughness (together with Druzhinina, O.V.), in Matematicheskoe modelirovanie transportnykh dinamicheskikh sistem: ustoichivost’ i kachestvennyi analiz: Mezhvuz. sb. nauchn. trudov (Mathematical Modelling of Transport DynamicalSystems: Stability and Qualitative Analysis. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 53–59.Google Scholar
  12. Diskretnaya matematika: Uchebnoe posobie (together with Druzhinina, O.V., Romankov, V.V., and Petunin, A.P.) (Discrete Mathematics. Textbook), Moscow: Rus. State Open Techn. Univ. of Railway Transport.Google Scholar
  13. Strength Criterion in the Zhukovskii Sense for a Closed Geodesics (together with Druzhinina, O.V.), in Tez. dokl. XL Vseros. nauch. konf. po problemam matematiki, informatiki, fiziki, i khimii (Abstr. XL All-Russia Sci. Conf. on Problems of Mathematics, Computer Science, Physics, and Chemistry), Moscow: Peoples’ Friendship Univ. of Russia, pp. 3–5.Google Scholar

2005

  1. On the Terminal Model of Asymptotically Strong Trajectories of a Many-Dimensional Stationary Flow (together with Druzhinina, O.V.), in Ustoichivost’ i kachestvennyi analiz matematicheskikh modelei dinamicheskikh sistem transporta (Stability and Qualitative Analysis of Mathematical Models of Dynamical Systems in Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 8–13.Google Scholar
  2. On the Stochastic Technical Stability of the Motion of a Railway Wheel Pair (together with Druzhinina, O.V.), in Ustoichivost’ i kachestvennyi analiz matematicheskikh modelei dinamicheskikh sistem transporta (Stability and Qualitative Analysis of Mathematical Models of Dynamical Systems in Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 22–26.Google Scholar
  3. On the Improvement of Mathematical Models of the Interaction of a Wheel and a Rail (together with Druzhinina, O.V.), in Ustoichivost’ i kachestvennyi analiz matematicheskikh modelei dinamicheskikh sistem transporta (Stability and Qualitative Analysis of Mathematical Models of Dynamical Systems in Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 60–67.Google Scholar
  4. On the Stability of Solutions of Evolution Equations of the “Reaction-Diffusion” Type (together with Lisovskii, E.V.), in Ustoichivost’ i kachestvennyi analiz matematicheskikh modelei dinamicheskikh sistem transporta (Stability and Qualitative Analysis of Mathematical Models of Dynamical Systems in Transport), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 81–83.Google Scholar
  5. On the Stability of Solutions of Evolution Equations (together with Lisovskii, E.V.), in Tez. dokl. XLI Vseros. nauch. konf. po problemam matematiki, informatiki, fiziki, i khimii (Abstr. XLI All-Russia Sci. Conf. on Problems of Mathematics, Computer Science, Physics, and Chemistry), Moscow: Peoples’ Friendship Univ. of Russia, pp. 3–4.Google Scholar

2006

  1. On Limit Properties of Lyapunov Asymptotically Stable and Asymptotically Zhukovskii Stable Trajectories of a Dynamical System (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 409, no. 2, pp. 185–190.Google Scholar
  2. Terminal Properties of Asymptotically Strong and Phase-Asymptotically Stable Trajectories and Finite-Dimensional Dynamic Flows (together with Druzhinina, O.V.), Izv. RAEN Differ. Uravn., no. 11, pp. 251–255.Google Scholar
  3. Investigation of the Stability, Bifurcations, and Estimate of the Critical Motion Velocity of a Railway Carrier (together with Shchennikova, E.V. and Druzhinina, O.V.), Transport: Nauka, Tekhnika, Upravl., no. 10, pp. 3–7.Google Scholar
  4. On the Asymptotic Strength of Trajectories in the Zhukovskii Sense and Averaging in Nonlinear Systems (together with Druzhinina, O.V.), in Tr. IX Mezhdunar. sem. im. E.S. Pyatnitskogo “Ustoichivost’ i kolebaniya nelineinykh sistem upravleniya” (Proc. IX Int. E. S. Pyatnitskii Sem. “Stability and Oscillations of Nonlinear Control Systems”), Moscow: Inst. Control Probl. RAS, pp. 76–78.Google Scholar
  5. Terminal Properties of Asymptotically Strong Finite-Dimensional Dynamical Systems (together with Druzhinina, O.V.), in Kachestvennoe i chislennoe issledovanie matematicheskikh modelei dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative and Numerical Investigation of Mathematical Models of Dynamical Systems: Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 4–10.Google Scholar
  6. Analysis ofWagging of a Rail Carrier at High Velocities of Motion (together with Druzhinina, O.V.), in Kachestvennoe i chislennoe issledovanie matematicheskikh modelei dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative and Numerical Investigation of Mathematical Models of Dynamical-Systems: Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 18–25.Google Scholar
  7. Matematika: Metod. ukazaniya k kontrol’nym rabotam No 7 i No 8 dlya studentov II kursa inzhenernotekhnicheskikh spetsial’nostei (together with Druzhinina, O.V., Sadykova, O.I., Soboleva, A.V., and Ryazanova, M.V.) (Mathematics: Methodical Recommendations to Tests nos. 7 and 8 for Second-Year Students of Technical-Engineering Specialities), Moscow: Rus. State Open Techn. Univ. of Railway Transport.Google Scholar

2007

  1. Obobshchennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami (Generalized Direct Lyapunov Method for Systems with Distributed Parameters), Moscow: Izd. URSS.Google Scholar
  2. On the Exponential Instability of Trajectories of Dynamical Systems (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 414, no. 4, pp. 480–483.Google Scholar
  3. On the Mathematical Modeling of a Safe Motion of a Wheel Transport Carrier on a Rough Way (together with Golechkov, Yu.I. and Efimov, I.A.), in Voprosy teorii bezopasnosti i ustoichivosti sistem (Problems of Theory of Safety and Stability of Systems), Moscow: Comput. Center of RAS, no. 9, pp. 193–200.Google Scholar
  4. Stability of Solutions of a Nonlinear System of Parabolic Equations with Random Parameters (together with Katulev, A.N. and Malevinskii, M.F.), Nelin. Mir, vol. 5, nos. 10–11, pp. 663–673.Google Scholar
  5. On the Stability and Safety of the Motion of Transport Dynamical Systems (together with Golechkov, Yu.I.), Naukoemk. Tekhnol., no. 7, pp. 56–60.Google Scholar
  6. On the Generalization of the Poincaré-Bendixon Theorem (together with Druzhinina, O.V.), in Kachestvennoe i chislennoe issledovanie matematicheskikh modelei dinamicheskikh sistem: Mezhvuz. sb. nauchn. trudov (Qualitative and Numerical Investigation of Mathematical Models of Dynamical-Systems. Inter-Inst. Collection of Sci. Works), Moscow: Rus. State Open Techn. Univ. of Railway Transport, pp. 84–89.Google Scholar
  7. On Conditions of Strength and Nonstrength of Trajectories in Problems of Celestial and Classical Mechanics (together with Druzhinina, O.V.), in Tez. dokl. mezhdunar. kongressa “Nelineinyi dinamicheskii analiz-2007”, posv. 150-letiyu so dnya rozhdeniya A.M. Lyapunova (Abstr. Int. Cong. “Nonlin. Dyn. Anal.—2007” devoted to the 150th Birthday of A.M. Lyapunov), St. Petersburg: St. Petersburg State Univ., p. 387.Google Scholar
  8. On Limit Properties of Trajectories of Nonlinear Dynamical Systems (together with Druzhinina, O.V.), in Tr. IX mezhdunar. Chetaevskoi konf. “Analiticheskaya mekhanika, ustoichivost’ i upravlenie dvizheniem” (Proc. IX Int. Chetaev Conf. “Analytic Mechanics, Stability, and Motion Control”), Irkutsk: IDS & TU RAN, pp. 77–85.Google Scholar

2008

  1. Necessary and Sufficient Conditions for the Existence of Auto-Oscillations in a Finite-Dimensional Continuous Dynamical Systems (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 418, no. 1, pp. 37–41.Google Scholar
  2. Estimates for the Accuracy of Interpolation Methods for Boundary Value Problems for Ordinary Differential Equations (together with Katulev, A.N. and Malevinskii, M.F.), Differ. Uravn.. vol. 44, no. 10, pp. 1437–1440.Google Scholar
  3. On the Problem of the Stability of Sets of Periodic Solutions of Nonlinear Systems (together with Druzhinina, O.V. and Il’ina, T.A.), in Teoreticheskie i prikladnye zadachi nelineinogo analiza (Theoretical and Applied Problems of Nonlinear Analysis), Moscow: Comput. Center of RAS, pp. 89–99.Google Scholar
  4. On Criteria for the Presence of a Nonlinear Stability of an Equilibrium State of Equations of a Perturbed Motion for Known First Integrals, Izv. RAEN Differ. Uravn., no. 13, pp. 158–165.Google Scholar
  5. On Energetic Investigation Method of the Stability of an Equilibrium State of a Nonlinear Dynamical System (together with Druzhinina, O.V.), in Differentsial’naya algebra i dinamika sistem: Mezhvuz. sb. nauchn. trudov (Differential Algebra and Dynamics of Systems: Inter-Inst. Collection of Sci. Works), Saransk: Mordov. Gos. Univ., pp. 48–55.Google Scholar
  6. Existence Criterion for Auto-Oscillations in a Nonlinear Dynamical System (together with Druzhinina, O.V.), in Tez. dokl. X mezhdunar. sem. im. E.S. Pyatnitskogo “Ustoichivost’ i kolebaniya nelineinykh sistem upravleniya,” posv. pamyati akad. V.V. Rumyantseva (Abstr. X Int. E.S. Pyatnitskii Sem. “Stability and Oscillations of Nonlinear Control Systems” Devoted to the Memory of Academician V.V. Rumyantsev), Moscow: Inst. Contr. Probl. of RAS, pp. 99–101.Google Scholar
  7. On the Stability of an Equilibrium State of a Nonlinear Dynamical System with Known First Integrals (together with Druzhinina, O.V.), in Tez. dokl. X mezhdunar. sem. im. E.S. Pyatnitskogo “Ustoichivost’ i kolebaniya nelineinykh sistem upravleniya,” posv. pamyati akad. V.V. Rumyantseva (Abstr. X Int. E.S. Pyatnitskii Sem. “Stability and Oscillations of Nonlinear Control Systems” Devoted to the Memory of Academician V.V. Rumyantsev), Moscow: Inst. Contr. Probl. of RAS, pp. 364–365.Google Scholar
  8. On the Structure of the Dynamically Limit Set of a Lagrange Stable Trajectory, in Tez. dokl. vseros. nauchno-prakt. konf. “Inzhenernye sistemy-2008” (Abstr. All-Russia Sci.-Pract. Conf. “Engineering Systems-2008”), Moscow: Peoples’ Friendship Univ. of Russia, p. 151.Google Scholar

2009

  1. Method of Lyapunov Functions for the Investigation of Dissipative Autonomous Dynamic Processes (together with Druzhinina, O.V.), Differ. Uravn., vol. 45, no. 8, pp. 1108–1115.Google Scholar
  2. On the Asymptotic Strength of the Poisson Stable Compact Invariant Set of a Dynamical System (together with Druzhinina, O.V.), Dokl. Akad. Nauk, vol. 429, no. 2, pp. 191–195.Google Scholar
  3. Investigation of the Motion Safety on the Basis of a Dynamic Strength of Trajectories (together with Cherkashin, Yu.M. and Druzhinina, O.V.), in Voprosy teorii bezopasnosti i ustoichivosti sistem (Problems of the Theory of Safety and Stability of Systems), Moscow: Comput. Center of RAS, no. 11, pp. 123–136.Google Scholar
  4. Funktsii Lyapunova, indeks i divergentsiya v kachestvennoi teorii dinamicheskikh protsessov (together with Druzhinina, O.V.) (Lyapunov Functions, Index, and Divergence in the Qualitative Theory of Dynamic Processes), Moscow-Izhevsk: Inst. Comput. Techn.Google Scholar
  5. Qualitative Investigation of Dissipative Dynamic Processes on the Basis of Lyapunov Functions (together with Karpechenkova, O.N. and Druzhinina, O.V.), in Simbirskaya molodezhnaya nauchnaya shkola po analiticheskoi dinamike, ustoichivosti i upravleniyu dvizheniyami i protsessami: Tez. dokl. (Abstr. Simbirsk Youth Sci. School on Analytic Dynamics, Stability, and Control of Motions and Processes), Ulyanovsk: Izd. Ulyanovsk. Gos. Univ., pp. 59–60.Google Scholar
  6. On the Cauchy Problem for a Linear Evolution Equation with a Continuous Unbounded Operator of a Parabolic Type (together with Lisovskii, E.V. and Shchennikova, E.V.), in Izbrannye voprosy sovremennogo estestvoznaniya: Mezhvuz. sb. nauchn. trudov (Selected Topics of Modern Science. Inter-Inst. Collection of Sci. Works), Moscow: Moscow Inst. of Transport Eng., pp. 164–167.Google Scholar
  7. Parabolic Quasilinear Problem and the Existence of Stable Periodic Solutions (together with Lisovskii, E.V.), in Sb. dokl. XII nauchnoi konf. MGTU “Stankin” i Uchebno-nauch. tsentra mat. modelirovaniya MGTU “Stankin” — IMM RAN po matematike modelirovaniyu i informatike (Proc. XII Sci. Conf. Moscow State Techn. Univ. “Stankin” and Educ.-Sci. Center of Math. Model. of Moscow State Techn. Univ. “Stankin” — Inst. Math. Model. of RAS on Mathematics, Modeling, and Computer Science), Moscow: Moskov. Gos. Tekhn. Univ. “Stankin,” pp. 69–70.Google Scholar
  8. Investigation of Dissipative Autonomous Dynamic Processes (together with Druzhinina, O.V.), in Tez. dokl. XLV Vseros. nauch. konf. po problemam matematiki, informatiki, fiziki, i khimii (Abstr. XLV All-Russia Sci. Conf. on Problems of Mathematics, Computer Science, Physics, and Chemistry), Moscow: Peoples’ Friendship Univ. of Russia, pp. 15–16.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Amel’kin
  • O. V. Druzhinina
  • Yu. G. Evtushenko
  • I. V. Gaishun
  • E. A. Grebenikov
  • A. V. Gulin
  • V. A. Il’in
  • N. A. Izobov
  • V. V. Kozlov
  • N. A. Severtsev
  • T. K. Shemyakina
  • V. N. Shchennikov

There are no affiliations available

Personalised recommendations