Differential Equations

, Volume 45, Issue 2, pp 197–208 | Cite as

Unique solvability of the stationary Fokker-Planck equation in a class of positive functions

  • A. I. Noarov
Partial Differential Equations


We study the stationary Focker-Planck equation Δu − div(uf) = 0 with a given vector field f of the class C0 (Rn) on the basis of a fixed point principle that generalizes the contraction mapping method. Next, we introduce a parameter in the equation and prove the unique solvability of the equation Δu − div(f) = 0 with the parameter in the class of positive slowly increasing functions. We reveal the analytic dependence of the positive solution u on the parameter γ. Pointwise estimates for positive solutions are proved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Noarov, A.I., On the Solvability of the Stationary Fokker-Planck Equations That Are Close to the Laplace Equation, Differ. Uravn., 2006, vol. 42, no. 4, pp. 521–530.MathSciNetGoogle Scholar
  2. 2.
    Mikhailov, V.P., Differentsial’nye uravneniya v chastnykh proizvodnykh (Partial Differential Equations), Moscow: Nauka, 1983.Google Scholar
  3. 3.
    Mizohata, S., The Theory of Partial Differential Equations, New York: Cambridge Univ., 1973. Translated under the title Teoriya uravnenii v chastnykh proizvodnykh, Moscow: Mir, 1977.MATHGoogle Scholar
  4. 4.
    Yosida, K., Functional Analysis, Berlin: Springer-Verlag, 1965. Translated under the title Funktsional’nyi analiz, Moscow: Mir, 1967.MATHGoogle Scholar
  5. 5.
    Krylov, N.V., Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Gel’dera (Lectures on Elliptic and Parabolic Equations in Hölder Spaces), Novosibirsk: Nauchnaya Kniga, 1998.Google Scholar
  6. 6.
    Noarov, A.I., Generalized Solvability of the Stationary Fokker-Planck Equation, Differ. Uravn., 2007, vol. 43, no. 6, pp. 813–819.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. I. Noarov
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations