Differential Equations

, Volume 43, Issue 4, pp 536–549 | Cite as

Pseudodifferential operators on stratified manifolds

  • V. E. Nazaikinskii
  • A. Yu. Savin
  • B. Yu. Sternin
Partial Differential Equations


Irreducible Representation Operator Family Local Operator PSEUDODIFFERENTIAL Operator Tangent Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egorov, Yu. and Schulze, B.-W., Pseudo-Differential Operators, Singularities, Applications, Basel: Birkhäuser, 1997.zbMATHGoogle Scholar
  2. 2.
    Schulze, B.-W., Pseudodifferential Operators on Manifolds with Singularities, Amsterdam: North-Holland, 1991.Google Scholar
  3. 3.
    Calvo, D., Martin, C.-I., and Schulze, B.-W., in RIMS Conf. Dedicated to L. Boutet de Monvel on Microlocal Analysis and Asymptotic Analysis, Kyoto, August, 2004, Tokyo, 2005, pp. 22–35.Google Scholar
  4. 4.
    Melrose, R., in Partial Differential Equations and Mathematical Physics (Copenhagen, 1995; Lund, 1995), Boston: Birkhäuser, 1996, pp. 246–261.Google Scholar
  5. 5.
    Nistor, V., in Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Providence: AMS, 2005, pp. 307–328.Google Scholar
  6. 6.
    Plamenevskii, B.A. and Senichkin, V.N., Algebra i Analiz, 2001, vol. 13, no. 6, pp. 124–174.MathSciNetGoogle Scholar
  7. 7.
    Antonevich, A. and Lebedev, A., Functional-Differential Equations. I. C*-Theory, Harlow: Longman, 1994.Google Scholar
  8. 8.
    Gohberg, I. and Krupnik, N., One-Dimensional Linear Singular Integral Equations. I. Introduction, Basel: Birkhäuser, 1992.zbMATHGoogle Scholar
  9. 9.
    Simonenko, I.B., Izv. Akad. Nauk SSSR Ser. Mat., 1965, vol. 29, no. 3, pp. 567–586; no. 4, pp. 757–782.MathSciNetGoogle Scholar
  10. 10.
    Vasilevskii, N.L., in Linear Operators in Function Spaces. Abstracts of the North Caucasus Regional Conf., Groznyi, 1989, pp. 32–33.Google Scholar
  11. 11.
    Vasilevski, N., Integral Equations Operator Theory, 1994, vol. 19, no. 3, pp. 327–348.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nazaikinskii, V.E., Savin, A.Yu., Sternin, B.Yu., and Schulze, B.-W., Dokl. Akad. Nauk, 2005, vol. 402, no. 6, pp. 743–747.MathSciNetGoogle Scholar
  13. 13.
    Atiyah, M.F., in Proc. of the Int. Symposium on Functional Analysis, Tokyo: University of Tokyo Press, 1969, pp. 21–30.Google Scholar
  14. 14.
    Dixmier, J., Les C*-algèbres et leurs représentations, Paris: Gauthier-Villars, 1969.Google Scholar
  15. 15.
    Arveson, W., An Invitation to C*-Algebras, New York; Heidelberg; Berlin: Springer-Verlag, 1976.zbMATHGoogle Scholar
  16. 16.
    Plamenevskii, B.A. and Senichkin, V.N., Izv. Akad. Nauk SSSR Ser. Mat., 1987, vol. 51, no. 4, pp. 833–859.Google Scholar
  17. 17.
    Dauns, J. and Hofmann, K.H., Representation of Rings by Sections, Providence: AMS, 1968.Google Scholar
  18. 18.
    Yosida, K., Functional Analysis, New York: Springer-Verlag, 1968.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. E. Nazaikinskii
    • 1
    • 2
    • 3
  • A. Yu. Savin
    • 1
    • 2
    • 3
  • B. Yu. Sternin
    • 1
    • 2
    • 3
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Russian State Social UniversityMoscowRussia

Personalised recommendations