Advertisement

Cosmic Research

, Volume 57, Issue 3, pp 156–162 | Cite as

Spatial and Temporal Variability of Solar Radiation Arriving at the Top of the Atmosphere

  • V. M. Fedorov
  • D. M. FrolovEmail author
Article
  • 16 Downloads

Abstract

Based on the previously calculated insolation of the Earth, we determine the variations in solar radiation arriving at the top of the atmosphere, which are mainly connected with changes in the inclination of Earth’s rotation axis due to precession and nutation. The amplitudes of semiannual and hemispheric variations in solar radiation arriving at the top of the atmosphere were calculated. The results can be used in precise calculations of the radiative balance of Earth and its surface and atmosphere.

Notes

REFERENCES

  1. 1.
    Bakulin, P.I., Kononovich, E.V., and Moroz, V.I., Kurs obshchei astronomii (A Course of General Astronomy), Moscow: Nauka, 1983.Google Scholar
  2. 2.
    Budyko, M.I., Izmenenie klimata (Measurement of Climate), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  3. 3.
    Drozdov, O.A., Vasil’ev, N.V., Raevskii, A.N., et al., Klimatologiya (Climatology), Leningrad: Gidrometeoizdat, 1989.Google Scholar
  4. 4.
    Milankovich, M., Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanii klimata (Mathematical Climatology and Astronomical Theory of Climate Fluctuations), Moscow–Leningrad: GONTI, 1939.Google Scholar
  5. 5.
    Monin, A.S., Vvedenie v teoriyu klimata (Introduction to the Climate Theory), Leningrad: Gidrometeoizdat, 1982.Google Scholar
  6. 6.
    Monin, A.S. and Shishkov, Yu.A., Istoriya klimata (History of Climate), Leningrad: Gidrometeoizdat, 1979.Google Scholar
  7. 7.
    Fedorov, V.M., Insolyatsiya Zemli i sovremennye izmeneniya klimata (The Earth’s Insolation and Current Climate Changes), Moscow: Fizmatlit, 2018.Google Scholar
  8. 8.
    Khromov, S.P. and Petrosyants, M.A., Meteorologiya i klimatologiya (Meteorology and Climatology), Moscow: MGU, 2006.Google Scholar
  9. 9.
    Fedorov, V.M., Interannual variability of the solar constant, Sol. Syst. Res., 2012, vol. 46, no. 2, pp. 170–176.  https://doi.org/10.1134/S0038094612020049 ADSCrossRefGoogle Scholar
  10. 10.
    Fedorov, V.M., Interannual variations in the duration of the tropical year, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 750–753.  https://doi.org/10.1134/S1028334X13070015 ADSCrossRefGoogle Scholar
  11. 11.
    Fedorov, V.M., Latitudinal variability of incoming solar radiation in various time cycles, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 96–99.  https://doi.org/10.1134/S1028334X15010183 ADSCrossRefGoogle Scholar
  12. 12.
    Fedorov, V.M., Periodic perturbations and small variations of the solar climate of the earth, Dokl. Earth Sci., 2014, vol. 457, no. 1, pp. 869–872.  https://doi.org/10.1134/S1028334X14070137 ADSCrossRefGoogle Scholar
  13. 13.
    Fedorov, V.M., Spatial and temporal variation in solar climate of the earth in the present epoch, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 779–791.  https://doi.org/10.1134/S0001433815080034 CrossRefGoogle Scholar
  14. 14.
    Fedorov, V.M., Theoretical calculation of the interannual variability of the Earth’s insolation with daily resolution, Sol. Syst. Res., 2016, vol. 50, no. 3, pp. 220–224.  https://doi.org/10.1134/S0038094616030011 ADSCrossRefGoogle Scholar
  15. 15.
    Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., et al., JPL’s on-line solar system data service, Bull. Am. Astron. Soc., 1996, vol. 28, no. 3, p. 1158.ADSGoogle Scholar
  16. 16.
    Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K., Earth’s energy imbalance and implications, Atmos. Chem. Phys., 2011, vol. 11, no. 24, pp. 13421–13449. https://doi.org/10.5194/acp-11-13421-2011 ADSCrossRefGoogle Scholar
  17. 17.
    http://earthobservatory.nasa.gov/Features/EnergyBalance/page6.php.Google Scholar
  18. 18.
    http://ssd.jpl.nasa.gov.Google Scholar
  19. 19.
    http://www.solar-climate.com/sc/bd01.htm.Google Scholar
  20. 20.
    http://www.pmodwrc.ch/.Google Scholar
  21. 21.
    Kopp, G. and Lean, J., A new lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 2011, vol. 37, L01706.  https://doi.org/10.1029/2010GL0455777 ADSGoogle Scholar
  22. 22.
    Loeb, N.G., Lyman, J.M., Johnson, G.C., et al., Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geosci., 2012, no. 5, pp. 110–113.  https://doi.org/10.1038/ngeo1375
  23. 23.
    Raschke, E. and Ohmura, A., Radiation budget of the climate system, in Observed Global Climate, Landolt-Börnstein Group V Geophysics (Numerical Data and Functional Relationships in Science and Technology), Hantel, M., Ed., Berlin: Springer, 2005, vol. 6.Google Scholar
  24. 24.
    Stephens, G.L., Li, J., Wild, M., et al., An update on Earth’s energy balance in light of the latest global observations, Nature Geosci., 2012, vol. 5, pp. 691–696.  https://doi.org/10.1038/NGE01580 ADSCrossRefGoogle Scholar
  25. 25.
    Trenberth, K.E. and Fasullo, J.T., Changes in the flow of energy through the Earth’s climate system, Meteorol. Z., 2009, vol. 18, no. 4, pp. 369–377.CrossRefGoogle Scholar
  26. 26.
    Trenberth, K.E. and Fasullo, J.T., Tracking Earth’s energy: From El Niño to global warming, Surv. Geophys., 2012, vol. 33, nos. 3–4, pp. 413–426.  https://doi.org/10.1007/s10712-011-9150-2 ADSCrossRefGoogle Scholar
  27. 27.
    Trenberth, K.E., Fasullo, J.T., and Kiehl, J., Earth’s global energy budget, Bull. Am. Meteorol. Soc., 2009, vol. 90, no. 3, pp. 311–323.  https://doi.org/10.1175/2008BAMS2634.1 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations