Advertisement

Cosmic Research

, Volume 56, Issue 6, pp 488–497 | Cite as

Monitoring of Natural and Technogenic Space Hazards: Results of the Lomonosov Mission and Universat-SOCRAT Project

  • V. A. Sadovnichii
  • M. I. Panasyuk
  • V. M. Lipunov
  • A. V. Bogomolov
  • V. V. Bogomolov
  • G. K. Garipov
  • E. S. Gorbovskoy
  • D. S. Zimnukhov
  • A. F. Iyudin
  • M. A. Kaznacheeva
  • V. V. Kalegaev
  • P. A. Klimov
  • A. S. Kovtukh
  • V. G. Kornilov
  • N. V. Kuznetsov
  • I. A. Maksimov
  • S. K. Mit
  • V. I. Osedlo
  • V. L. Petrov
  • M. V. Podzolko
  • E. P. Popova
  • A. Yu. Poroykov
  • I. A. Rubinstein
  • K. Yu. Saleev
  • S. I. Svertilov
  • V. I. Tulupov
  • B. A. Khrenov
  • V. V. Chazov
  • A. S. Chepurnov
  • Ya. A. Shtunder
  • A. N. Shustova
  • I. V. Yashin
Article

Abstract

The results of experiments onboard the Lomonosov satellite on observing natural and technogenic space hazards including electromagnetic transients and space debris are discussed. A new space project Universat-SOCRAT being developed by Moscow State University is also discussed. The project aims to create a constellation of small satellites for real-time monitoring of the radiation environment and potentially hazardous objects of natural (asteroids, meteoroids) and technogenic origin (space debris) in near-Earth space, and such phenomena as cosmic and atmospheric gamma-ray bursts and optical and ultraviolet radiation flashes from Earth’s atmosphere.

Notes

ACKNOWLEDGMENTS

This work was supported by Russia’s Ministry of Education and Science (unique project ID: RFMEFI60717X0175).

REFERENCES

  1. 1.
    Sadovnichy, V.A., Panasyuk, M.I., Amelushkin, A.M., et al., Lomonosov satellite—space observatory to study extreme phenomena in space, Space Sci. Rev., 2017, vol. 212, nos. 3–4, pp. 1705–1738.ADSCrossRefGoogle Scholar
  2. 2.
    Sadovnichii, V.A., Amelyushkin, A.M., Angelopoulos, V., et al., Space experiments aboard the Lomonosov MSU satellite, Cosmic Res., 2013, vol. 51, no. 6, pp. 427–433.ADSCrossRefGoogle Scholar
  3. 3.
    Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: Description of the experiment 2016, Cosmic Res., 2016, vol. 54, no. 4, pp. 261–269.ADSCrossRefGoogle Scholar
  4. 4.
    Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part II: Final results, Cosmic Res., 2016, vol. 54, no. 5, pp. 343–350.ADSCrossRefGoogle Scholar
  5. 5.
    Sadovnichii, V.A., Panasyuk, M.I., Yashin, I.V., et al., Investigations of the space environment aboard the Universitetsky–Tat’yana and Universitetsky–Tat’yana-2 microsatellites, Sol. Syst. Res., 2011, vol. 45, no. 1, pp. 3–29.ADSCrossRefGoogle Scholar
  6. 6.
    Mullen, E.G., Gussenhoven, M.S., Ray, K., and Violet, M.A., A double-peaked inner radiation belt: Cause and effect as seen on CRRES, IEEE Trans. Nucl. Sci., 1991, vol. 38, pp. 1713–1718.ADSCrossRefGoogle Scholar
  7. 7.
    Myagkova, I.N., Bogomolov, A.V., and Shugai, Yu.S., The dynamics of relativistic electron fluxes in the near-Earth space in 2001–2005, Moscow Univ. Phys. Bull., 2010, vol. 65, no. 3, pp. 234–237.ADSCrossRefGoogle Scholar
  8. 8.
    Tverskaya, L.V., Balashov, S.V., Veden’kin, N.N., et al., Outer radiation belt of relativistic electrons during the minimum of the 23rd solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 740–745.Google Scholar
  9. 9.
    Harris, A., The population of near-Earth asteroids, Icarus, 2015, vol. 257, pp. 302–312.ADSCrossRefGoogle Scholar
  10. 10.
    Mainzer, A., Bauer, J., Grav, T., and Masiero, J., The population of tiny near-Earth objects observed by NEOWISE, Astrophys. J., 2014, vol. 784, no. 2, id 110.Google Scholar
  11. 11.
    Gurevich, A.V., Milikh, G.M., and Roussel-Dupre, R.A., Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 1992, vol. 165, nos. 5–6, pp. 463–468.ADSCrossRefGoogle Scholar
  12. 12.
    Mareev, E.A., Evtushenko, A.A., and Yashunin, S.A., On the modelling of sprites and sprite-producing clouds in the global electric circuit, in Sprites, Elves and Intense Lightning Discharges, Füllekrug, M., et al., Eds., Springer, Netherlands, 2006, pp. 313–340.Google Scholar
  13. 13.
    Milikh, G.M., Valdivia, J.A., and Papadopoulos, K., Spectrum of red sprites, J. Atmos. Terr. Phys., 1998, vol. 60, nos. 7–9, pp. 907–915.ADSCrossRefGoogle Scholar
  14. 14.
    Surkov, V.V. and Hayakawa, M., Underlying mechanisms of transient luminous events: A review, Ann. Geophys., 2012, vol. 30, no. 8, pp. 1185–1212.ADSCrossRefGoogle Scholar
  15. 15.
    Fishman, G.J., Bhat, P.N., Mallozzi, R., et al., Discovery of intense gamma-ray flashes of atmospheric origin, Science, 1994, vol. 264, no. 5163, pp. 1313–1316.ADSCrossRefGoogle Scholar
  16. 16.
    Dwyer, J.R., Smith, D.M., and Cummer, S.A., High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena, Space Sci. Rev., 2012, vol. 173, nos. 1–4, pp. 133–196.ADSCrossRefGoogle Scholar
  17. 17.
    Dwyer, J.R., The relativistic feedback discharge model of terrestrial gamma ray flashes, J. Geophys. Res., 2012, vol. 117, no. A2, A02308.ADSGoogle Scholar
  18. 18.
    Garipov, G., Grigoriev, A., Khrenov, B., Klimov, P., and Panasyuk, M., High energy transient luminous atmospheric phenomena: The potential danger for suborbital flights, in Extreme Events in Geospace, Buzulukova, N., Ed., Elsevier, 2017, pp. 473–490.Google Scholar
  19. 19.
    Bhat, P.N., Meegan, C.A., von Kienlin, A., et al., The 3rd Fermi GBM gamma-ray burst catalog: The first six years, Astrophys. J. Suppl. Ser., 2016, vol. 223, no. 2, id 28.Google Scholar
  20. 20.
    Radioactive space debris: what goes up, must come down, WISE/NIRS Nuclear Monitor, no. 629, June 10, 2005.Google Scholar
  21. 21.
    Anikeeva, M.A., Boyarchuk, K.A., and Ulin, S.E., Space debris detection onboard a space vehicle, Vopr. Elektromekh., 2012, vol. 126, no. 1, pp. 13–18.Google Scholar
  22. 22.
    Klimov, P.A., Panasyuk, M.I., Khrenov, B.A., et al., The TUS detector of extreme energy cosmic rays on board the Lomonosov satellite, Space Sci. Rev., 2017, vol. 212, nos. 3–4, pp. 1687–1703.ADSCrossRefGoogle Scholar
  23. 23.
    Svertilov, S.I., Panasyuk, M.I., Bogomolov, V.V., et al., Wide-field gamma-spectrometer BDRG: GRB monitor on-board the Lomonosov mission, Space Sci. Rev., 2018, vol. 214, no. 1, id 8.Google Scholar
  24. 24.
    Lipunov, V.M., Gorbovskoy, E.S., Kornilov, V.G., et al., SHOK—the first Russian wide-field optical camera in space, Space Sci. Rev., 2018, vol. 214, no. 1, id 6.Google Scholar
  25. 25.
    Park, I.H., Panasyuk, M.I., Reglero, V., et al., UFFO/Lomonosov: The payload for the observation of early photons from gamma ray bursts, Space Sci. Rev., 2018, vol. 214, no. 1, id 14.Google Scholar
  26. 26.
    Adams, J.H. and the JEM-EUSO collaboration, Space experiment TUS onboard the Lomonosov satellite as pathfinder of JEM-EUSO, Exp. Astron., 2015, vol. 40, no. 1, pp. 315–326.ADSCrossRefGoogle Scholar
  27. 27.
    Khrenov, B.A., Klimov, P.A, Panasyuk, M.I., et al., First results from the TUS orbital detector in the extensive air shower mode, J. Cosmol. Astropart. Phys., 2017, vol. 2017, no. 9, id 006.Google Scholar
  28. 28.
    Khrenov, B.A. and Stulov, V.P., Detection of meteors and sub-relativistic dust grains by the fluorescence detectors of ultra high energy cosmic rays, Adv. Space Res., 2006, vol. 37, no. 10, pp. 1868–1875.ADSCrossRefGoogle Scholar
  29. 29.
    Adams, J.H., Ahmad, S., Albert, J.N., et al., JEM-EUSO: Meteor and nuclearite observations, Exp. Astron., 2015, vol. 40, no. 1, pp. 253–279.ADSCrossRefGoogle Scholar
  30. 30.
    Abdellaoui, G., Abe, S., Acheli, A., et al., Meteor studies in the framework of the JEM-EUSO program, Planet. Space Sci., 2017, vol. 143, pp. 245–255.ADSCrossRefGoogle Scholar
  31. 31.
    Lipunov, V., Kornilov, V., Gorbovkoy, E., et al., Master robotic net, Adv. Astron., 2010, id 349171.Google Scholar
  32. 32.
    Kornilov, V., Lipunov, V., Gorbovskoy, E., et al., Robotic optical telescopes global network master II. Equipment, structure, algorithms, Exp. Astron., 2012, vol. 33, no. 1, pp. 173–196.ADSCrossRefGoogle Scholar
  33. 33.
    Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., et al., Operational radiation monitoring in near-Earth space based on the system of multiple small satellites, Cosmic Res., 2015, vol. 53, no. 6, pp. 423–429.ADSCrossRefGoogle Scholar
  34. 34.
    Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., et al., Optimization of measurements of the Earth’s radiation belt particle fluxes, Cosmic Res., 2017, vol. 55, no. 2, pp. 79–87.ADSCrossRefGoogle Scholar
  35. 35.
    Garipov, G.K., Panasyuk, M.I., Rubinshtein, I.A., et al., Ultraviolet radiation detector of the MSU research educational microsatellite Universitetskii–Tat’yana, Instrum. Exp. Tech., 2006, vol. 49, no. 1, pp. 126–131.CrossRefGoogle Scholar
  36. 36.
    Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft, Adv. Space Res., 2016, vol. 57, no. 3, pp. 835–849.ADSCrossRefGoogle Scholar
  37. 37.
    Amelyushkin, A.M., Galkin, V.I., Goncharov, B.V., et al., The BDRG and SHOK instruments for studying gamma-ray burst prompt emission onboard the Lomonosov spacecraft, Cosmic Res., 2013, vol. 51, no. 6, pp. 434–438.ADSCrossRefGoogle Scholar
  38. 38.
    Kalegaev, V.V., Bobrovnikov, S.Yu., Kuznetsov, N.V., Myagkova, I.N., and Shugai, Yu.S., The SIMP MSU operational space monitoring center, in Prikladnye aspekty geliogeofiziki. Materialy spetsial’noi sektsii “Prakticheskie aspekty nauki kosmicheskoi pogody” 11-i ezhegodnoi konferentsii “Fizika plazmy v solnechnoi sisteme” (Applied Aspects of Heliogeophysics: Proceedings of the Special Section “Practical Aspects of Space Weather” of the 11th Annual Conference “Plasma Physics in the Solar System”), Moscow: IKI RAN, 2016, pp. 146–159.Google Scholar
  39. 39.
    Belyaev, V.A. and Chudakov, A.E., Ionization glow of air and its possible use for air shower detection, Izv. Akad. Nauk SSSR: Ser. Fiz., 1966, vol. 30, no. 10, pp. 1700–1707.Google Scholar
  40. 40.
    Klimov, P.A., Garipov, G.K., Khrenov, B.A., et al., Vernov satellite data of transient atmospheric events, J. Appl. Meteorol. Climatol., 2017, vol. 56, no. 8, pp. 2189–2201.ADSCrossRefGoogle Scholar
  41. 41.
    Dwyer, J.R., Smith, D.M., Uman, M.A., et al., Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft, J. Geophys. Res., 2010, vol. 115, no. D9, D09206.ADSCrossRefGoogle Scholar
  42. 42.
    Tavani, M., Marisaldi, M., Labanti, C., et al., Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Rev. Lett., 2011, vol. 106, no. 1, 018501.ADSCrossRefGoogle Scholar
  43. 43.
    Drozdov, A., Grigoriev, A., and Malyshkin, Y., Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights, J. Geophys. Res., 2013, vol. 118, no. 2, pp. 947–955.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Sadovnichii
    • 1
  • M. I. Panasyuk
    • 1
  • V. M. Lipunov
    • 1
  • A. V. Bogomolov
    • 1
  • V. V. Bogomolov
    • 1
  • G. K. Garipov
    • 1
  • E. S. Gorbovskoy
    • 1
  • D. S. Zimnukhov
    • 1
  • A. F. Iyudin
    • 1
  • M. A. Kaznacheeva
    • 1
  • V. V. Kalegaev
    • 1
  • P. A. Klimov
    • 1
  • A. S. Kovtukh
    • 1
  • V. G. Kornilov
    • 1
  • N. V. Kuznetsov
    • 1
  • I. A. Maksimov
    • 1
  • S. K. Mit
    • 1
  • V. I. Osedlo
    • 1
  • V. L. Petrov
    • 1
  • M. V. Podzolko
    • 1
  • E. P. Popova
    • 1
  • A. Yu. Poroykov
    • 1
  • I. A. Rubinstein
    • 1
  • K. Yu. Saleev
    • 1
  • S. I. Svertilov
    • 1
  • V. I. Tulupov
    • 1
  • B. A. Khrenov
    • 1
  • V. V. Chazov
    • 1
  • A. S. Chepurnov
    • 1
  • Ya. A. Shtunder
    • 1
  • A. N. Shustova
    • 1
  • I. V. Yashin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations