Advertisement

Cosmic Research

, Volume 57, Issue 1, pp 29–35 | Cite as

Winter Anomaly in the Critical Frequency of the Nighttime Polar Ionosphere’s E Layer

  • M. G. DeminovEmail author
  • G. F. Deminova
Article

Abstract

Analysis of the properties of the winter anomaly in E layer critical frequency foE in the nighttime (22.00–02.00 LT) polar ionosphere is performed based on data of the Tromso digital ionospheric station during 1995–1998. It is found that for these conditions, the winter anomaly in foE, i.e., the excess of the winter values of foE over summer values is typical not only for the median, but for the values of foE averaged over a month as well. The amplitude of the winter anomaly in foE is minimal for quiet geomagnetic conditions and reaches a maximum under moderate and enhanced geomagnetic activity (Kp = 3–4), mainly due to stronger increase in foE with geomagnetic activity increase in winter. This property of the winter anomaly is qualitatively and even quantitatively similar to the property of winter–summer asymmetry in fluxes of accelerated electrons to which discrete aurorae are related. That is why foE data from ionospheric stations could serve as an indicator of such fluxes in the polar ionosphere.

Notes

ACKNOWLEDGMENTS

The data on critical frequencies foE of the Tromso digital ionospheric station and on indices of solar and geomagnetic activity were taken from the sites of Space Physics Interactive Data Resource (SPIDR, http://spidr.ionosonde.net/spidr), the World Data Center for Solar-Terrestrial Physics, Chilton (http://www.ukssdc.ac.uk/wdcc1/), and World Data Center for Geomagnetism, Kyoto (http://wdc.kugi. kyoto-u.ac.jp/). Calculations by the ISRIM were performed at the site (http://madrigal.haystack.mit. edu/models). Calculations by the Storm-E model were performed with the help of the subprogram presented in the IRI model at the site (http://irimodel. org/). The work was partly supported by the Russian Foundation for Basic Research (project no. 17-05-00427) and by Program 28 of the Presidium of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    Taubenheim, J., Meteorological control of the D region, Space Sci. Rev., 1983, vol. 34, no. 4, pp. 397–411.ADSCrossRefGoogle Scholar
  2. 2.
    Danilov, A.D., Rodevich, A.Yu., and Smirnova, N.V., Parametric model of the D region taking into account meteorological effects, Geomagn. Aeron., 1991, vol. 31, no. 5, pp. 881–885.ADSGoogle Scholar
  3. 3.
    Huo, X.L., Yuan, Y.B., Ou, J.K., Zhang, K.F., and Bailey, G.J., Monitoring the global-scale winter anomaly of total electron contents using GPS data, Earth Planets Space, 2009, vol. 61, no. 8, pp. 1019–1024.ADSCrossRefGoogle Scholar
  4. 4.
    Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., A statistical study of the mid-latitude N m F2 winter anomaly, Adv. Space Res., 2010, vol. 45, no. 3, pp. 374–385.ADSCrossRefGoogle Scholar
  5. 5.
    Mikhailov, A.V. and Perrone, L., On the mechanism of seasonal and solar cycle N m F2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations, J. Geophys. Res., 2011, vol. 116, A03319.  https://doi.org/10.1029/2010JA016122 ADSCrossRefGoogle Scholar
  6. 6.
    Jakowski, N. and Förster, M., About the nature of the night-time winter anomaly effect (NWA) in the F-region of the ionosphere, Planet. Space Sci., 1995, vol. 43, no. 5, pp. 603–612.ADSCrossRefGoogle Scholar
  7. 7.
    Jakowski, N., Hoque, M.M., Kriegel, M., and Patidar, V., The persistence of the NWA effect during the low solar activity period 2007–2009, J. Geophys. Res.: Space, 2015, vol. 120, pp. 9148–9160.  https://doi.org/10.1002/2015JA021600 ADSCrossRefGoogle Scholar
  8. 8.
    Deminov, M.G. and Deminova, G.F., Winter anomaly of the E layer critical frequency in the nighttime auroral zone, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 584–590.Google Scholar
  9. 9.
    Deminov, M.G. and Deminova, G.F., Winter anomaly in the critical frequency of the E ayer in the nighttime polar cap, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 62–69.Google Scholar
  10. 10.
    Newell, P.T., Meng, C.-I., and Lyons, K.M., Suppression of discrete aurorae by sunlight, Nature, 1996, vol. 381, no. 6585, pp. 766–767.ADSCrossRefGoogle Scholar
  11. 11.
    Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The role of the ionosphere in aurora and space weather, Rev. Geophys., 2001, vol. 39, no. 2, pp. 137–149.ADSCrossRefGoogle Scholar
  12. 12.
    Cliver, E.W., Kamide, Y., and Ling, A.G., The semiannual variation of geomagnetic activity: Phases and profiles for 130 years of aa data, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 1, pp. 47–53.ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Y. and Paxton, L.J., An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1231–1242.ADSCrossRefGoogle Scholar
  14. 14.
    Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.Google Scholar
  15. 15.
    Badin, V.I., Deminov, M.G., Deminov, R.G., and Shubin, V.N., E layer critical frequency median model for auroral region, Soln.-Zemnaya Fiz., 2013, no. 22, pp. 24–26.Google Scholar
  16. 16.
    Zhang, Y., Paxton, L.J., Bilitza, D., and Doe, R., Near real-time assimilation in IRI of auroral peak E-region density and equatorward boundary, Adv. Space Res., 2010, vol. 46, pp. 1055–1063.ADSCrossRefGoogle Scholar
  17. 17.
    Bilitza, D., The International Reference Ionosphere—status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.ADSCrossRefGoogle Scholar
  18. 18.
    Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.ADSCrossRefGoogle Scholar
  19. 19.
    Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696.Google Scholar
  20. 20.
    Richards, P.G., Woods, T.N., and Peterson, W.K., HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 2006, vol. 37, no. 2, pp. 315–322.ADSCrossRefGoogle Scholar
  21. 21.
    Ramachandran, K.M. and Tsokos, C.P., Mathematical Statistics with Applications, Oxford: Elsevier, 2009.zbMATHGoogle Scholar
  22. 22.
    Newell, P.T., Sotirelis, T., and Wing, S., Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 2010, vol. 115, A03216.  https://doi.org/10.1029/2009JA014805 ADSGoogle Scholar
  23. 23.
    Lions, L.R. and Williams, D.J., Quantitative Aspects of Magnetospheric Physics, Dordrecht: D. Reidel, 1984; Moscow: Mir, 1987.Google Scholar
  24. 24.
    Johnson, M.T. and Wygant, J.R., The correlation of plasma density distributions over 5000 km with solar illumination of the ionosphere: Solar cycle and zenith angle observations, Geophys. Res. Lett., 2003, vol. 30, no. 24, 2260.  https://doi.org/10.1029/2003GL018175 ADSGoogle Scholar
  25. 25.
    Ohtani, S., Wing, S., Ueno, G., and Higuchi, T., Dependence of premidnight field-aligned currents and particle precipitation on solar illumination, J. Geophys. Res., 2009, vol. 114, A12205.  https://doi.org/10.1029/JA014115 ADSCrossRefGoogle Scholar
  26. 26.
    Cattell, C., Dombeck, J., and Hanson, L., Solar cycle effects on parallel electric field acceleration of auroral electron beams, J. Geophys. Res.: Space, 2013, vol. 118, pp. 5673–5680.  https://doi.org/10.1002/jgra.50546 ADSCrossRefGoogle Scholar
  27. 27.
    Mursula, K., Tanskanen, E., and Love, J.J., Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry, Geophys. Res. Lett., 2011, vol. 38, L06104.  https://doi.org/10.1029/2011GL046751 ADSCrossRefGoogle Scholar
  28. 28.
    Holt, J.M., Zhang, S.-R., and Buonsanto, M.J., Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data, Geophys. Res. Lett., 2002, vol. 29, no. 8,  https://doi.org/10.1029/2002GL014678
  29. 29.
    Zhang, S.-R., Holt, J.M., van Eyken, A.P., et al., Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars, Geophys. Res. Lett., 2005, vol. 32, L20102.  https://doi.org/10.1029/2005GL023603 ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, S.-R., Holt, J.M., Bilitza, D.K., et al., Multiple-site comparisons between models of incoherent scatter radar and IRI, Adv. Space Res., 2007, vol. 39, pp. 910–917.ADSCrossRefGoogle Scholar
  31. 31.
    Mertens, C.J., Xu, X., Bilitza, D., et al., Empirical STORM-E model: I. Theoretical and observational basis, Adv. Space Res., 2013, vol. 51, pp. 554–574.ADSCrossRefGoogle Scholar
  32. 32.
    Mertens, C.J., Xu, X., Bilitza, D., et al., Empirical STORM-E model: II. Geomagnetic corrections to nighttime ionospheric E-region electron densities, Adv. Space Res., 2013, vol. 51, pp. 575–598.ADSCrossRefGoogle Scholar
  33. 33.
    Bessarab, F.S., Korenkov, Y.N., Klimenko, V.V., Klimenko, M.V., and Zhang, Y., E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement, Adv. Space Res., 2015, vol. 55, pp. 2124–2130.ADSCrossRefGoogle Scholar
  34. 34.
    Kirkwood, S. and Nilsson, H., High-latitude sporadic-E and other thin layers—the role of magnetospheric electric fields, Space Sci. Rev., 2000, vol. 91, nos. 3–4, pp. 579–613.ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Wu, J., Guo, L., Hu, Y., Zhao, H., and Xu, T., Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations, Adv. Space Res., 2015, vol. 55, pp. 1366–1371.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationTroitskRussia

Personalised recommendations