Advertisement

Cosmic Research

, Volume 56, Issue 6, pp 453–461 | Cite as

Modeling of Magnetic Dipolarizations and Turbulence in Earth’s Magnetotail as Factors of Plasma Acceleration and Transfer

  • E. I. ParkhomenkoEmail author
  • H. V. MalovaEmail author
  • V. Yu. Popov
  • E. E. Grigorenko
  • A. A. Petrukovich
  • L. M. Zelenyi
  • E. A. Kronberg
Article
  • 45 Downloads

Abstract

The paper is devoted to studying processes of plasma particle acceleration in the process of magnetic dipolarizations in a current sheet of Earth’s magnetotail. A numerical model is constructed that allows evaluation of particle acceleration in three possible scenarios: (A) Proper dipolarization; (B) Passage of multiple dipolarization fronts; (C) Passage of fronts followed by high-frequency electromagnetic oscillations. The energy spectra of three types of accelerated particles are obtained: hydrogen H+ and oxygen O+ ions and electrons e. It is shown that, at different time scales, predominant acceleration of various particle populations occurs in scenarios (A)–(C). Oxygen ions are accelerated most efficiently in single dipolarization process (A), protons (and, to some extent, electrons), in scenario (B), whereas scenario (C) is most efficient for acceleration of electrons. It is shown that accounting for high-frequency electromagnetic fluctuations, accompanying magnetic dipolarization, may explain the appearance of streams of particles with energies on the order of hundreds of keV in Earth’s magnetotail.

Notes

ACKNOWLEDGMENTS

This study was supported by the Volkswagen Foundation grant Az 90 312; A.A. Petrukovich’s study was supported by the Russian Science Foundation, project no. 14-12-00824.

REFERENCES

  1. 1.
    Sharma, A.S., Nakamura, R., Runov, A., et al., Transient and localized processes in the magnetotail: A review, Ann. Geophys., 2008, vol. 26, pp. 1–51.CrossRefGoogle Scholar
  2. 2.
    Retino, A., Nakamura, R., Vaivads, A., et al., Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail, J. Geophys. Res.: Space Phys., 2008, vol. 113, A12215.Google Scholar
  3. 3.
    Yamada, M., Kulsrud, R., and Ji, H., Magnetic reconnection, Rev. Mod. Phys., 2010, vol. 82, pp. 603–664.ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Delcourt, D.C., Pedersen, A., and Sauvaud, J.A., Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res., 1990, vol. 95, pp. 20853–20865.ADSCrossRefGoogle Scholar
  5. 5.
    Birn, J., Artemyev, A.V., Baker, D.N., et al., Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 2012, vol. 173, pp. 49–102.ADSCrossRefGoogle Scholar
  6. 6.
    Birn, J., Hesse, M., Nakamura, R., and Zaharia, S., Particle acceleration in dipolarization events, J. Geophys. Res., 2013, vol. 118, pp. 1960–1971.CrossRefGoogle Scholar
  7. 7.
    Ashour-Abdalla, M., Lapenta, G., Walker, R.J., et al., Multiscale study of electron energization during unsteady reconnection events, J. Geophys. Res., 2015, vol. 120, pp. 4784–4799.CrossRefGoogle Scholar
  8. 8.
    Grigorenko, E.E., Malykhin, A.Yu., Kronberg, E.A., et al., Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 6541–6558.ADSCrossRefGoogle Scholar
  9. 9.
    Zelenyi, L.M., Artemyev, A.V., Malova, H.V., et al., Marginal stability of thin current sheets in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 325–333.ADSCrossRefGoogle Scholar
  10. 10.
    Zelenyi, L.M., Malova, H.V., Artemyev, A.V., et al., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, pp. 118–160.ADSCrossRefGoogle Scholar
  11. 11.
    Angelopoulos, V., Runov, A., Zhou, X.Z., et al., Electromagnetic energy conversion at reconnection fronts, Science, 2013, vol. 341, pp. 1478–1482.ADSCrossRefGoogle Scholar
  12. 12.
    Artemyev, A.V., Lutsenko, V.N., and Petrukovich, A.A., Ion resonance acceleration by dipolarization fronts: Analytic theory and spacecraft observation, Ann. Geophys., 2012, vol. 30, pp. 317–324.ADSCrossRefGoogle Scholar
  13. 13.
    Lui, A.T.Y., Evidence for two types of dipolarization in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115, pp. 17–24.ADSCrossRefGoogle Scholar
  14. 14.
    Grigorenko, E.E., Malykhin, A.Yu., Kronberg, E.A., et al., Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 6541–6558.ADSCrossRefGoogle Scholar
  15. 15.
    Kronberg, E.A., Grigorenko, E.E., Turner, D.L., et al., Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event, J. Geophys. Res., 2017, vol. 122, pp. 3055–3072.CrossRefGoogle Scholar
  16. 16.
    Liang, H., Lapenta, G., Walker, R.J., et al., Oxygen acceleration in magnetotail reconnection, J. Geophys. Res., 2017, vol. 122, pp. 618–639.CrossRefGoogle Scholar
  17. 17.
    Zhou, X.Z., Angelopoulos, V., Sergeev, V.A., et al., Accelerated ions ahead of earthward propagating dipolarization fronts, J. Geophys. Res., 2010, vol. 115, A00I03.Google Scholar
  18. 18.
    Ashour-Abdalla, M., Lapenta, G., Walker, R.J., et al., Multiscale study of electron energization during unsteady reconnection events, J. Geophys. Res., 2015, vol. 120, pp. 4784–4799.CrossRefGoogle Scholar
  19. 19.
    Baker, D.N., Fritz, T.A., McPherron, R.L., et al., Magnetotail energy storage and release during the CDAW 6 substorm analysis intervals, J. Geophys. Res., 1985, vol. 90, pp. 1205–1216.ADSCrossRefGoogle Scholar
  20. 20.
    Grigorenko, E.E., Zelenyi, L.M., Dolgonosov, M.S., et al., Non-adiabatic ion acceleration in the Earth magnetotail and its various manifestations in the plasma sheet boundary layer, Space Sci. Rev., 2011, vol. 164, pp. 133–181.ADSCrossRefGoogle Scholar
  21. 21.
    Birn, J., Artemyev, A.V., Baker, D.N., et al., Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 2012, vol. 173, pp. 49–102.ADSCrossRefGoogle Scholar
  22. 22.
    Lui, A.T.Y., Evidence for two types of dipolarization in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115, pp. 17–24.ADSCrossRefGoogle Scholar
  23. 23.
    Nakamura, R., Baumjohann, W., Fujimoto, M., et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field, J. Geophys. Res.: Space Phys., 2008, vol. 113, A07S16.Google Scholar
  24. 24.
    Galeev, A.A., The mechanism of magnetosphere substorms, Sov. Phys. Usp., 1979, vol. 22, pp. 196–197.ADSCrossRefGoogle Scholar
  25. 25.
    Zelenyi, L.M., Lominadze, J.G., and Taktakishvili, A.L., Generation of the energetic proton and electron bursts in planetary magnetotails, J. Geophys. Res., 1990, vol. 95, pp. 3883–3891.ADSCrossRefGoogle Scholar
  26. 26.
    Runov, A., Angelopoulos, V., Sergeev, V.A., et al., Global properties of magnetotail current sheet flapping: THEMIS perspectives, Ann. Geophys., 2009, vol. 27, pp. 319–328.ADSCrossRefGoogle Scholar
  27. 27.
    Runov, A., Angelopoulos, V., Zhou, X.Z., et al., THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 2011, vol. 116, A05216.ADSCrossRefGoogle Scholar
  28. 28.
    Yao, Z., Fazakerley, A.N., Varsani, A., et al., Substructures within a dipolarization front revealed by high-temporal resolution cluster observations, J. Geophys. Res., 2016, vol. 121, pp. 5185–5202.CrossRefGoogle Scholar
  29. 29.
    Nakamura, R., Baumjohann, W., Klecker, B., et al., Motion of the dipolarization front during a flow burst event observed by cluster, Geophys. Res. Lett., 2002, vol. 29, id 1942.Google Scholar
  30. 30.
    Sergeev, V., Angelopoulos, V., Apatenkov, S., et al., Kinetic structure of the sharp injection/dipolarization front in the flow-braking region, Geophys. Res. Lett., 2009, vol. 36, L21105.ADSCrossRefGoogle Scholar
  31. 31.
    Angelopoulos, V., Baumjohann, W., Kennel, C.F., et al., Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 1992, vol. 97, pp. 4027–4039.ADSCrossRefGoogle Scholar
  32. 32.
    Sergeev, V., Angelopoulos, V., Kubyshkina, M., et al., Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage, J. Geophys. Res., 2011, vol. 116, A00I26.CrossRefGoogle Scholar
  33. 33.
    Runov, A., Angelopoulos, V., Sitnov, M., et al., Dipolarization fronts in the magnetotail plasma sheet, Planet. Space Sci., 2011, vol. 59, pp. 517–525.ADSCrossRefGoogle Scholar
  34. 34.
    Fu, H.S., Khotyaintsev, Y.V., Andre, M., et al., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 2011, vol. 38, L16104.ADSGoogle Scholar
  35. 35.
    Hamrin, M., Norqvist, P., Karlsson, T., et al., The evolution of flux pileup regions in the plasma sheet: Cluster observations, J. Geophys. Res., 2013, vol. 118, pp. 6279–6290.CrossRefGoogle Scholar
  36. 36.
    Slavin, J.A., Owen, C.J., Dunlop, M.W., et al., Cluster four spacecraft measurements of small traveling compression regions in the near-tail, Geophys. Res. Lett., 2003, vol. 30, no. 23, id 2208.Google Scholar
  37. 37.
    Sergeev, V.A., Elphic, R.C., Mozer, F.S., et al., A two satellite study of nightside flux transfer events in the plasma sheet, Planet. Space Sci., 1992, vol. 40, pp. 1551–1572.ADSCrossRefGoogle Scholar
  38. 38.
    Heyn, M.F. and Semenov, V.S., Rapid reconnection in compressible plasma, J. Plasma Phys., 1996, vol. 3, pp. 2725–2741.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Semenov, V.S., Penz, T., Ivanova, V.V., et al., Reconstruction of the reconnection rate from cluster measurements: first results, J. Geophys. Res., 2005, vol. 110, A11217.ADSCrossRefGoogle Scholar
  40. 40.
    Longcope, D.W. and Priest, E.R., Fast magnetosonic waves launched by transient, current sheet reconnection, J. Plasma Phys., 2007, vol. 14, id 122905.Google Scholar
  41. 41.
    Sitnov, M.I., Swisdak, M., and Divin, A.V., Dipolarization fronts as a signature of transient reconnection in the magnetotail, J. Geophys. Res., 2009, vol. 114, A04202.ADSCrossRefGoogle Scholar
  42. 42.
    Sitnov, M.I. and Swisdak, M., Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts, J. Geophys. Res., 2011, vol. 116, A12216.ADSCrossRefGoogle Scholar
  43. 43.
    Ono, Y., Nosé, M., Christon, S.P., et al., The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization, J. Geophys. Res., 2009, vol. 114, A05209.ADSCrossRefGoogle Scholar
  44. 44.
    El-Alaoui, M., Richard, R.L., Ashour-Abdalla, M., et al., Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations, J. Geophys. Res., 2013, vol. 118, pp. 7752–7761.CrossRefGoogle Scholar
  45. 45.
    Grigorenko, E.E., Kronberg, E.A., Daly, P.W., et al., Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet, J. Geophys. Res., 2016, vol. 121, pp. 9985–10004.CrossRefGoogle Scholar
  46. 46.
    Grigorenko, E.E., Kronberg, E.A., and Daly, P.W., Heating and acceleration of charged particles during magnetic dipolarizations, Cosmic Res., 2017, vol. 55, no. 1, pp. 57–66.ADSCrossRefGoogle Scholar
  47. 47.
    Ipavich, F.M., Galvin, A.B., Gloeckler, G., et al., Energetic (greater than 100 keV) O+ ions in the plasma sheet, Geophys. Res. Lett., 1984, vol. 11, pp. 504–507.ADSCrossRefGoogle Scholar
  48. 48.
    Nosé, M., Ohtani, S., and Lui, A.T.Y., Change of energetic ion composition in the plasma sheet during substorms, J. Geophys. Res., 2000, vol. 105, pp. 23277–23286.ADSCrossRefGoogle Scholar
  49. 49.
    Cattell, C.A. and Mozer, F.S., Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times, Geophys. Res. Lett., 1982, vol. 9, pp. 1041–1044.ADSCrossRefGoogle Scholar
  50. 50.
    Hoshino, M., Nishida, A., Yamamoto, T., et al., Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation, Geophys. Res. Lett., 1994, vol. 21, pp. 2935–2938.ADSCrossRefGoogle Scholar
  51. 51.
    Bauer, T.M., Baumjohann, W., Treumann, R.A., et al., Low-frequency waves in the near-Earth plasma sheet, J. Geophys. Res., 1995, vol. 100, pp. 9605–9618.ADSCrossRefGoogle Scholar
  52. 52.
    Delcourt, D.C., Pedersen, A., and Sauvaud, J.A., Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res., 1990, vol. 95, pp. 20853–20865.ADSCrossRefGoogle Scholar
  53. 53.
    Veltri, P., Zimbardo, G., Taktakishvili, A.L., et al., Effect of magnetic turbulence on the ion dynamics in the distant magnetotail, J. Geophys. Res., 1998, vol. 103, pp. 14897–14916.ADSCrossRefGoogle Scholar
  54. 54.
    Delcourt, D.C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol-Terr. Phys., 2002, vol. 64, pp. 551–559.ADSCrossRefGoogle Scholar
  55. 55.
    Greco, A., Artemyev, A., and Zimbardo, G., Heavy ion acceleration at dipolarization fronts in planetary magnetotails, Geophys. Res. Lett., 2015, vol. 42, pp. 8280–8287.ADSCrossRefGoogle Scholar
  56. 56.
    Perri, S., Lepreti, F., Carbone, V., et al., Dynamical properties of test particles in stochastic electromagnetic fields, Commun. Nonlinear Sci. Numer. Simul., 2009, vol. 14, pp. 2347–2352.ADSCrossRefGoogle Scholar
  57. 57.
    Greco, A., Perri, S., Zimbardo, G., et al., Particle acceleration by stochastic fluctuations and dawn–dusk electric field in the Earth’s magnetotail, Adv. Space Res., 2009, vol. 44, pp. 528–533.ADSCrossRefGoogle Scholar
  58. 58.
    Ukhorskiy, A.Y., Sitnov, M.I., Merkin, V.G., et al., Ion acceleration at dipolarization fronts in the inner magnetosphere, J. Geophys. Res., 2017, vol. 122, pp. 3040–3054.Google Scholar
  59. 59.
    Zhou, X.Z., Ge, Y.S., Angelopoulos, V., Runov, A., et al., Dipolarization fronts and associated auroral activities: 2. Acceleration of ions and their subsequent behavior, J. Geophys. Res., 2012, vol. 117, A10227.ADSCrossRefGoogle Scholar
  60. 60.
    Birn, J., Thomsen, M.F., and Hesse, M., Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields, J. Plasma Phys., 2004, vol. 11, pp. 1825–1833.CrossRefGoogle Scholar
  61. 61.
    Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al., Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere, Ann. Geophys., 2007, vol. 25, pp. 801–814.ADSCrossRefGoogle Scholar
  62. 62.
    Hoshino, M., Electron surfing acceleration in magnetic reconnection, J. Geophys. Res.: Space Phys., 2005, vol. 110, A10215.Google Scholar
  63. 63.
    Catapano, F., Zimbardo, G., Perri, S., et al., Proton and heavy ion acceleration by stochastic fluctuations in the Earth’s magnetotail, Ann. Geophys., 2016, vol. 34, pp. 917–926.ADSCrossRefGoogle Scholar
  64. 64.
    Harris, E.G., On a plasma sheet separating regions of oppositely directed magnetic field, Nuovo Cimento A, 1962, vol. 23, pp. 115–121.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. I. Parkhomenko
    • 1
    Email author
  • H. V. Malova
    • 1
    • 2
    Email author
  • V. Yu. Popov
    • 1
    • 3
    • 4
  • E. E. Grigorenko
    • 1
  • A. A. Petrukovich
    • 1
  • L. M. Zelenyi
    • 1
  • E. A. Kronberg
    • 5
    • 6
  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Skobeltsyn Research Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  3. 3.Faculty of Physics, Moscow State UniversityMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Max Planck Institute for Solar System ResearchGöttingenGermany
  6. 6.Ludwig Maximilian University of MunichMunichGermany

Personalised recommendations