Advertisement

Cosmic Research

, Volume 56, Issue 6, pp 462–470 | Cite as

Structure of Current Sheets with Quasi-Adiabatic Dynamics of Particles in the Solar Wind

  • Kh. V. Malova
  • V. Yu. Popov
  • O. V. Khabarova
  • E. E. Grigorenko
  • A. A. Petrukovich
  • L. M. Zelenyi
Article
  • 13 Downloads

Abstract

Within the self-consistent hybrid model based on the quasi-adiabatic approximation of the proton dynamics, a fine structure of strong current sheets (SCSs) in the solar wind has been investigated, including the heliospheric current sheet. The motion of electrons is fast and considered in the Boltzmann approximation. The simulation results have been shown that the SCS profiles have a multiscale enclosed structure with a narrow central current sheet that is enclosed in a wider sheet, similar to the heliospheric current sheet surrounded by the plasma sheet. The features of the SCS structure are determined by the relative contributions of the current of demagnetized protons in serpentine orbits and drift currents of electrons. The model predicts and describes the properties of SCSs observed by spacecraft. It has been shown that the multiscale structure of current sheets is an inherent intrinsic property of current sheets in the solar wind.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-12-00824. O.V. Khabarova acknowledges the support of ISSI within the International Team 405 “Current Sheets, Turbulence, Structures, and Particle Acceleration in the Heliosphere”, and the Russian Foundation for Basic Research (project nos. 16-02-00479, 17-02-01328, and 17-02-00300). E.E. Grigorenko acknowledges the support of the RFBR (project no. 16-52-16009).

REFERENCES

  1. 1.
    Balogh, A. and Jokipii, J.R., The heliospheric magnetic field and its extension to the inner heliosheath, Space Sci. Rev., 2009, vol. 143, pp. 85–110.ADSCrossRefGoogle Scholar
  2. 2.
    Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 1958, vol. 128, pp. 664–676.ADSCrossRefGoogle Scholar
  3. 3.
    Winterhalter, D., Smith, E.J., Burton, M.E., et al., The heliospheric plasma sheet, J. Geophys. Res., 1994, vol. 99, pp. 6667–6680.ADSCrossRefGoogle Scholar
  4. 4.
    Smith, E.J., The heliospheric current sheet, J. Geophys. Res., 2001, vol. 106, 15819.ADSCrossRefGoogle Scholar
  5. 5.
    Zharkova, V.V. and Khabarova, O.V., Particle dynamics in the reconnecting heliospheric current sheet: Solar wind data versus three-dimensional particle-in-cell simulations, Astrophys. J., 2012, vol. 752, no. 1, id 35.Google Scholar
  6. 6.
    Liu, Y.C.-M., Huang, J., Wang, C., et al., A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 8721–8732.CrossRefGoogle Scholar
  7. 7.
    Behannon, K.W., Neubauer, F.M., and Barnstorf, H., Fine-scale characteristics of interplanetary sector boundaries, J. Geophys. Res., 1981, vol. 86, pp. 3273–3287.ADSCrossRefGoogle Scholar
  8. 8.
    Zharkova, V.V. and Khabarova, O.V., Additional acceleration of solar-wind particles in current sheets of the heliosphere, Ann. Geophys., 2015, vol. 33, no. 4, pp. 457–470.ADSCrossRefGoogle Scholar
  9. 9.
    Crooker, N.U., Siscoe, G.L., Shodhan, S., et al., Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 1993, vol. 98, pp. 9371–9381.ADSCrossRefGoogle Scholar
  10. 10.
    Crooker, N.U., Huang, C.-L., Lamassa, S.M., et al., Heliospheric plasma sheets, J. Geophys. Res., 2004, vol. 109, A03107.ADSGoogle Scholar
  11. 11.
    Blanco, J.J., Rodriguez-Pacheco, J., Hidalgo, M.A., et al., Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 2173–2181.ADSCrossRefGoogle Scholar
  12. 12.
    Merkin, V.G., Lyon, J.G., McGregor, S.L., et al., Disruption of a heliospheric current sheet fold, Geophys. Res. Lett., 2011, vol. 38, L14107.ADSCrossRefGoogle Scholar
  13. 13.
    Xu, F., Li, G., Zhao, L., Zhang, Y., et al., Angular distribution of solar wind magnetic field vector at 1 AU, Astrophys. J., 2015, vol. 801, no. 1, id 58.Google Scholar
  14. 14.
    Pereira, B.F., Philip, B.J., and Girish, T.E., On the nature of IMF polarity dependent asymmetries in solar wind plasma properties during the minimum of sunspot cycles 23 and 24, J. Atmos. Sol.-Terr. Phys., 2016, vol. 140, pp. 34–40.ADSCrossRefGoogle Scholar
  15. 15.
    Khabarova, O., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 2015, vol. 808, no. 2, id 181.Google Scholar
  16. 16.
    Khabarova, O.V., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. II. Particle energization inside magnetically confined cavities, Astrophys. J., 2016, vol. 827, no. 2, id 122.Google Scholar
  17. 17.
    Pudovkin, M.I., Runov, A.V., Zaitseva, S.A., et al., Electric currents at IMF sector boundaries, Sol. Phys., 1999, vol. 184, no. 1, pp. 173–186.ADSCrossRefGoogle Scholar
  18. 18.
    Simunac, K.D.C., Galvin, A.B., Farrugia, C.J., et al., The heliospheric plasma sheet observed in situ by three spacecraft over four solar rotations, Sol. Phys., 2012, vol. 281, no. 1, pp. 423–447.ADSGoogle Scholar
  19. 19.
    Klein, L. and Burlaga, L.F., Interplanetary sector boundaries 1971–1973, J. Geophys. Res., 1980, vol. 85, no. A5, pp. 2269–2276.ADSCrossRefGoogle Scholar
  20. 20.
    Bavassano, B., Woo, R., and Bruno, R., Heliospheric plasma sheet and coronal streamers, Geophys. Res. Lett., 1997, vol. 24, no. 13, pp. 1655–1658.ADSCrossRefGoogle Scholar
  21. 21.
    Roberts, D.A., Keiter, P.A., and Goldstein, M.L., Origin and dynamics of the heliospheric streamer belt and current sheet, J. Geophys. Res., 2005, vol. 110, A06102.ADSGoogle Scholar
  22. 22.
    Eselevich, M.V. and Eselevich, V.G., Streamer belt in the solar corona and the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 3, pp. 291–298.Google Scholar
  23. 23.
    Milovanov, A.V. and Zelenyi, L.M., Development of fractal structure in the solar wind and distribution of magnetic field in the photosphere, in Solar System Plasmas in Space and Time, Burch, J.L. and Waite, J.H., Eds.,Washington, D.C.: AGU, 1994, vol. 84, pp. 43–52.Google Scholar
  24. 24.
    Harrison, R.A., Davis, Ch.J., Eyles, Ch.J., et al., First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun–Earth line, Sol. Phys., 2008, vol. 247, pp. 171–193.ADSCrossRefGoogle Scholar
  25. 25.
    Plotnikov, I., Rouilllard, A.P., Davies, J.A., et al., Long-term tracking of corotating density structures using heliospheric imaging, Sol. Phys., 2016, vol. 291, no. 6, pp. 1853–1875.ADSCrossRefGoogle Scholar
  26. 26.
    Gosling, J.T., Magnetic reconnection in the heliosphere: New insights from observations in the solar wind universal heliophysical processes, Proceedings IAU Symposium No. 257, Gopalswamy, N. and Webb, D.F., Eds., International Astronomical Union, 2009. doi 10.1017/ S1743921309029597Google Scholar
  27. 27.
    Khabarova, O., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 2015, vol. 808, no. 2, id 181.Google Scholar
  28. 28.
    Ruffenach, A., Lavraud, B., Owens, M.J., et al., Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 2012, vol. 117, A09101.ADSCrossRefGoogle Scholar
  29. 29.
    Gosling, J.T., Asbridge, J.R., Bame, S.J., et al., Noncompressive density enhancements in the solar wind, J. Geophys. Res., 1977, vol. 82, no. 32, pp. 5005–5010.ADSCrossRefGoogle Scholar
  30. 30.
    Borrini, G., Wilcox, J.M., Gosling, J.T., et al., Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU, J. Geophys. Res., 1981, vol. 86, no. A6, pp. 4565–4573.ADSCrossRefGoogle Scholar
  31. 31.
    Feldman, W.C., Asbridge, J.R., Bame, S.J., et al., The solar origins of solar wind interstream flows: Near-equatorial coronal streamers, J. Geophys. Res., 1981, vol. 86, no. A7, pp. 5408–5416.ADSCrossRefGoogle Scholar
  32. 32.
    Wang, S., Liu, Y.F., and Zheng, H.N., Magnetic reconnection in multiple heliospheric current sheets, Sol. Phys., 1997, vol. 173, no. 2, pp. 409–426.ADSCrossRefGoogle Scholar
  33. 33.
    Forsyth, R.J., Rees, A., Balogh, A., et al., Magnetic field observations of transient events at Ulysses, 1996–2000, Space Sci. Rev., 2001, vol. 97, nos. 1–4, pp. 217–220.ADSCrossRefGoogle Scholar
  34. 34.
    Foullon, C., Owen, C.J., Dasso, S., et al., The apparent layered structure of the heliospheric current sheet: Multi-spacecraft observations, Sol. Phys., 2009, vol. 259. nos. 1–2, pp. 389–416.ADSCrossRefGoogle Scholar
  35. 35.
    Riley, P., Linker, J.A., and Mikić, Z., Modeling the heliospheric current sheet: Solar cycle variations, J. Geophys. Res., 2002, vol. 107, no. A7, pp. SSH 8-1–SSH 8-6.Google Scholar
  36. 36.
    Kislov, R.A., Khabarova, O., and Malova, H.V., A new stationary analytical model of the heliospheric current sheet and the plasma sheet, J. Geophys. Res., 2015, vol. 120, pp. 8210–8228.CrossRefGoogle Scholar
  37. 37.
    Schatten, K.H., Large-scale properties of the interplanetary magnetic field, in Solar Wind, Sonett, C.P., Coleman, P.J., and Wilcox, J.M., Eds., Washington, D.C.: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1972, p. 65.Google Scholar
  38. 38.
    Israelevich, P.L., Gombosi, T.I., Ershkovich, A.I., et al., MHD simulation of the three-dimensional structure of the heliospheric current sheet, Astron. Astrophys., 2001, vol. 376, no. 1, pp. 288–291.ADSCrossRefGoogle Scholar
  39. 39.
    Schwadron, N.A., An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the sun, Geophys. Res. Lett., 2002, vol. 29, no. 14, pp. 8-1–8-4.Google Scholar
  40. 40.
    Echim, M.M., Lemaire, J., and Lie-Svendsen, Ø., A review on solar wind modeling: Kinetic and fluid aspects, Surv. Geophys., 2011, vol. 32, no. 1, pp. 1–70.ADSCrossRefGoogle Scholar
  41. 41.
    Suess, S.T., Ko, Y.-K., von Steiger, R., and Moore, R.L., Quiescent current sheets in the solar wind and origins of slow wind, J. Geophys. Res., 2009, vol. 114, A04103. doi 10.1029/2008JA013704ADSCrossRefGoogle Scholar
  42. 42.
    Šafránková, J., Němeček, Z., Cagaš, P., et al., Short-scale variations of the solar wind helium abundance, Astrophys. J., 2013, vol. 778, no. 1, id 25.Google Scholar
  43. 43.
    Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., “Matreshka” model of multilayered current sheet, Geophys. Res. Lett., 2006, vol. 33, no. 5, L05105.ADSGoogle Scholar
  44. 44.
    Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy, Nonlinear Processes Geophys., 2004, vol. 11, pp. 579–587.ADSCrossRefGoogle Scholar
  45. 45.
    Malova, H.V., Popov, V.Y., Grigorenko, E.E., et al., Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind, Astrophys. J., 2017, vol. 834, id 34.Google Scholar
  46. 46.
    Harris, E.G., On a plasma sheath separating regions of oppositely directed magnetic field, Nuovo Cimento, 1962, vol. 23, no. 1, pp. 115–121.CrossRefzbMATHGoogle Scholar
  47. 47.
    Petrukovich, A.A., Artemyev, A.V., Malova, H.V., et al., Embedded current sheets in the Earth’s magnetotail, J. Geophys. Res., 2011, vol. 116, A00I25.CrossRefGoogle Scholar
  48. 48.
    Sitnov, M.I., Zelenyi, L.M., Malova, H.V., et al., Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res., 2000, vol. 105, р. 13029.ADSCrossRefGoogle Scholar
  49. 49.
    Zelenyi, L., Sitnov, M.I., Malova, H.V., et al., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Processes Geophys., 2000, vol. 7, pp. 127–139.ADSCrossRefGoogle Scholar
  50. 50.
    Büchner, J. and Zelenyi, L.M., Regular and chaotic charged particle motion in magnetotaillike field reversals. 1. Basic theory of trapped motion, J. Geophys. Res., 1989, vol. 94, no. A9, pp. 11821–11842.ADSCrossRefGoogle Scholar
  51. 51.
    Chew, G.F., Goldberger, M.L., and Low, F.E., The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. R. Soc. London, Ser. A, 1956, vol. 236, no. 1204, pp. 119–135.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Artemyev, A.V., Petrukovich, A.A., Nakamura, R., et al., Proton velocity distribution in thin current sheets: Cluster observations and theory of transient trajectories, J. Geophys. Res., 2010, vol. 115, A12255.ADSCrossRefGoogle Scholar
  53. 53.
    Malova, H.V., Popov, V.Yu., Grigorenko, E.E., et al., Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind, Astrophys. J., 2017, vol. 834, no. 1, id 34.Google Scholar
  54. 54.
    Bykov, A.A., Zelenyi, L.M., and Malova, Kh.V., Triple splitting of a thin current sheet-a new type of plasma equilibrium, Plasma Phys. Rep., 2008, vol. 34, no. 2, pp. 128–134.ADSCrossRefGoogle Scholar
  55. 55.
    Greco, A., Taktakishvili, A.L., Zimbardo, G., et al., Ion dynamics in the near-Earth magnetotail: Magnetic turbulence versus normal component of the average magnetic field, J. Geophys. Res., 2002, vol. 107, no. A10, pp. SMP 1-1–SMP 1-16.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Kh. V. Malova
    • 1
    • 2
  • V. Yu. Popov
    • 2
    • 3
    • 4
  • O. V. Khabarova
    • 5
  • E. E. Grigorenko
    • 2
    • 6
  • A. A. Petrukovich
    • 2
  • L. M. Zelenyi
    • 2
  1. 1.Skobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Faculty of Physics, Moscow State UniversityMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesTroitskRussia
  6. 6.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations