Advertisement

Cosmic Research

, Volume 56, Issue 6, pp 411–419 | Cite as

The Solar Wind and Heliospheric Current System in the Years of Maximum and Minimum Solar Activity

  • E. V. Maiewski
  • R. A. Kislov
  • Kh. V. Malova
  • O. V. Khabarova
  • V. Yu. Popov
  • A. A. Petrukovich
Article
  • 14 Downloads

Abstract

Within the axisymmetric MHD model of the solar wind, the magnetic field of the Sun has been analyzed in two phases of the solar cycle: the minimum activity, when the dipole magnetic field dominates and the maximum activity, when the quadrupole field predominates. It has been shown that during the period of maximum solar activity, the heliospheric current sheet acquires a conical shape and shifts to high latitudes up to 30° above the ecliptic plane. In the opposite hemisphere, at the same latitudes, a second current sheet of conical shape with an azimuth current of the opposite direction is established. It has been shown that the profiles of the main characteristics of the solar wind become steeper with distance from the Sun, and their amplitudes decrease, in this case, for the quadrupole field, the dependences of the main characteristics of the solar wind are more complex. A comparison of the results of the model with averaged characteristics of the solar wind shows a good match between the observed values and model parameters.

Notes

ACKNOWLEDGMENTS

We are grateful to Academician L.M. Zeleny, Director of the Space Research Institute, Russian Academy of Sciences for valuable remarks and attention to this study. E.V. Maiewski and A.A. Petrukovich acknowledge the support of Program no. 28 of the Presidium of the Russian Academy of Sciences. Kh.V. Malova acknowledges the support of the Russian Foundation for Basic Research (project no. 16-02-00479 and 16-52-16009). R.A. Kislov acknowledges the support of the Russian Foundation for Basic Research (project no. 17-02-01328). V.Yu. Popov acknowledges the support of the state program Plasma. O.V. Khabarova acknowledges the support of the International Space Science Institute (ISSI) within the framework of the work of International Team 405 Current Sheets, Turbulence, Structures, and Particle Acceleration in the Heliosphere, and the Russian Foundation for Basic Research (project nos. 16-02-00479 and 17-02-00300).

REFERENCES

  1. 1.
    Balogh, A. and Erdõs, G., The heliospheric magnetic field, Space Sci. Rev., 2013, vol. 176, nos. 1–4, pp. 177–215.ADSCrossRefGoogle Scholar
  2. 2.
    Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 1958, vol. 128, pp. 664–676.ADSCrossRefGoogle Scholar
  3. 3.
    Parker, E.N., Dynamical theory of the solar wind, Space Sci. Rev., 1965, vol. 4, pp. 666–708.ADSCrossRefGoogle Scholar
  4. 4.
    Woo, R. and Habbal, S.R., Imprint of the Sun on the solar wind, Astrophys. J., 1999, vol. 510, pp. L69–L72.ADSCrossRefGoogle Scholar
  5. 5.
    Pogorelov, N., Fichtner, V., Czechowski, H., et al., Heliosheath processes and the structure of the heliopause: Energetic particles, cosmic rays and magnetic fields, Space Sci. Rev., 2017, vol. 212, pp. 193–248.ADSCrossRefGoogle Scholar
  6. 6.
    Hoeksema, J.T., The large-scale structure of the heliospheric current sheet during the ULYSSES Epoch, Space Sci. Rev., 1995, vol. 72, nos. 1–2, pp. 137–148.ADSCrossRefGoogle Scholar
  7. 7.
    Hundhausen, A.J., Coronal mass ejections, in Cosmic Winds and the Heliosphere, Jokipii, J.R., Sonett, C.S., and Giampappa, M.S., Eds., Tucson: University of Arizona, 1997, pp. 259–296.Google Scholar
  8. 8.
    Jones, G.H. and Balogh, A., Context and heliographic dependence of heliospheric planar magnetic structures, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 12713–12724.ADSCrossRefGoogle Scholar
  9. 9.
    Wilcox, J.M., Hoeksema, J.T., and Scherrer, P.H., Origin of the warped heliospheric current sheet, Science, 1980, vol. 209, p. 603.ADSCrossRefGoogle Scholar
  10. 10.
    Mursula, K. and Hiltula, T., Systematically asymmetric heliospheric magnetic field: Evidence for a quadrupole mode and non-axisymmetry with polarity flip-flops, Sol. Phys., 2004, vol. 224, nos. 1–2, pp. 133–143.ADSCrossRefGoogle Scholar
  11. 11.
    Bavassano, B., Woo, R., and Bruno, R., Heliospheric plasma sheet and coronal streamers, Geophys. Res. Lett., 1997, vol. 24, no. 13, pp. 1655–1658.ADSCrossRefGoogle Scholar
  12. 12.
    Wang, Y.-M., Sheeley, N.R., Jr., Walters, J.H., et al., Origin of streamer material in the outer corona, Astrophys. J., 1998, vol. 498, no. 2, pp. L165–L168.ADSCrossRefGoogle Scholar
  13. 13.
    Smith, E.J., The heliospheric current sheet, J. Geophys. Res., 2001, vol. 106, pp. 15819–15831.ADSCrossRefGoogle Scholar
  14. 14.
    Eselevich, M.V. and Eselevich, V.G., Streamer belt in the solar corona and the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 3, pp. 291–298.Google Scholar
  15. 15.
    Balogh, A., Magnetic fields in the inner heliosphere, Space Sci. Rev., 1998, vol. 83, nos. 1–2, pp. 93–104.ADSCrossRefGoogle Scholar
  16. 16.
    Winterhalter, D., Smith, E.J., Burton, M.E., et al., The heliospheric current sheet, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 6667–6680.ADSCrossRefGoogle Scholar
  17. 17.
    Wilcox, J.M. and Ness, N.F., Quasi-stationary corotating structure in the interplanetary medium, J. Geophys. Res., 1965, vol. 70, pp. 5793–5805.ADSCrossRefGoogle Scholar
  18. 18.
    Svalgaard, L., Wilcox, J.M., Scherrer, P.H., et al., The Sun’s magnetic sector structure, Sol. Phys., 1975, vol. 45, no. 1, pp. 83–91.ADSCrossRefGoogle Scholar
  19. 19.
    Israelevich, P.L., Gombosi, T.I., Ershkovich, A.I., et al., MHD simulation of the three-dimensional structure of the heliospheric current sheet, Astron. Astrophys., 2001, vol. 376, no. 1, pp. 288–291.ADSCrossRefGoogle Scholar
  20. 20.
    Veselovsky, I.S., Zhukov, A.N., and Panasenco, O.A., Reversal of heliospheric magnetic field polarity: Theoretical model, Sol. Syst. Res., 2002, vol. 36, no. 1, pp. 80–84.ADSCrossRefGoogle Scholar
  21. 21.
    Lacombe, C., Salem, C., Mangeney, A., et al., Latitudinal distribution of the solar wind properties in the low- and high-pressure regimes: Wind observations, Ann. Geophys., 2000, vol. 18, no. 8, pp. 852–865.ADSCrossRefGoogle Scholar
  22. 22.
    Liu, Y.C.-M., Huang, J., Wang, C., et al., A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 8721–8732.CrossRefGoogle Scholar
  23. 23.
    Kislov, R.A., Khabarova, O.V., and Malova, H.V., A new stationary analytical model of the heliospheric current sheet, J. Geophys. Res., 2015, vol. 120, pp. 1–19. doi 10.1002/2015JA021294CrossRefGoogle Scholar
  24. 24.
    Malova, H.V., Popov, V.Yu., Grigorenko, E.E., et al., Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind, Astrophys. J., 2017, vol. 834, pp. 1–9. doi 10.3847/1538-4357/834/1/34ADSGoogle Scholar
  25. 25.
    Burlaga, L.F. and Ness, N.F., Global patterns of heliospheric magnetic field polarities and elevation angles: 1990 through 1995, J. Geophys. Res., 1997, vol. 102, no. A9, pp. 19731–19742.ADSCrossRefGoogle Scholar
  26. 26.
    Erdõs, G. and Balogh, A., The symmetry of the heliospheric current sheet as observed by Ulysses during the fast latitude scan, Geophys. Res. Lett., 1998, vol. 25, no. 3, pp. 245–248.ADSCrossRefGoogle Scholar
  27. 27.
    Hu, Y.Q., Feng, X.S., Wu, S.T., et al., Three-dimensional MHD modeling of the global corona throughout solar cycle 23, J. Geophys. Res., 2008, vol. 113, A03106.ADSGoogle Scholar
  28. 28.
    Jones, G.H. and Balogh, A., Planar structuring of magnetic fields at solar minimum and maximum, Space Sci. Rev., 2001, vol. 97, nos. 1–4, pp. 165–168.ADSCrossRefGoogle Scholar
  29. 29.
    Smith, E.J., Neugebauer, M., Balogh, A., et al., Disappearance of the heliospheric sector structure at Ulysses, Geophys. Res. Lett., 1993, vol. 20, no. 21, pp. 2327–2330.ADSCrossRefGoogle Scholar
  30. 30.
    Hoeksema, J.T., Wilcox, J.M., and Scherrer, P.H., The structure of the heliospheric current sheet 1978–1982, J. Geophys. Res., 1983, vol. 88, no. A12, pp. 9910–9918.ADSCrossRefGoogle Scholar
  31. 31.
    Levine, R.H., Schulz, M., and Frazier, E.N., Simulation of the magnetic structure of the inner heliosphere by means of a non-spherical source surface, Sol. Phys., 1982, vol. 77, nos. 1–2, pp. 363–392.ADSCrossRefGoogle Scholar
  32. 32.
    Smith, E.J., Balogh, A., Forsyth, R.F., et al., Recent observations of the heliospheric magnetic field at Ulysses: Return to low latitude, Adv. Space Res., 2000, vol. 26, pp. 823–832.ADSCrossRefGoogle Scholar
  33. 33.
    Sýkora, J., Badalyan, O.G., and Obridko, V.N., Relationship between the coronal shape and the magnetic field topology during the solar cycle, Adv. Space Res., 2002, vol. 29, no. 3, pp. 395–400.ADSCrossRefGoogle Scholar
  34. 34.
    Petrie, G.J.D. and Haislmaier, K.J., Low-latitude coronal holes, decaying active regions and global coronal magnetic structure, Astrophys. J., 2013, vol. 775, id 100.Google Scholar
  35. 35.
    Simpson, J.A., Zhang, M., and Bame, S., A solar polar north–south asymmetry for cosmic-ray propagation in the heliosphere: the Ulysses pole-to-pole rapid transit, Astrophys. J. Lett., 1996, vol. 465, no. 1, pp. L69–L72.ADSCrossRefGoogle Scholar
  36. 36.
    Heber, B., Dröge, W., Kunow, H., et al., Spatial variation of >106 Mev proton fluxes observed during the Ulysses rapid latitude scan: Ulysses COSPIN/KET results, Geophys. Res. Lett., 1996, vol. 23, no. 12, pp. 1513–1516.ADSCrossRefGoogle Scholar
  37. 37.
    Wang, Y.-M., Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequence, Space Sci. Rev., 2014, vol. 186, nos. 1–4, pp. 387–407.ADSCrossRefGoogle Scholar
  38. 38.
    Usmanov, A.V., Goldstein, M.L., and Matthaeus, W.H., Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity, Astrophys. J., 2014, vol. 788, no. 1, id 43.Google Scholar
  39. 39.
    Banaszkiewicz, M., Axford, W.I., and McKenzie, J.F., An analytic solar magnetic field model, Astron. Astrophys., 1998, vol. 337, no. 3, pp. 940–944.ADSGoogle Scholar
  40. 40.
    Réville, V., Brun, A.S., Matt, S.P., et al., The effect of magnetic topology on thermally driven wind: Toward a general formulation of the braking law, Astrophys. J., 2015, vol. 798, no. 2, id 116.Google Scholar
  41. 41.
    Maiewski, E.V., Kislov, R.A., Malova, H.V., Popov, V.Yu., and Petrukovich, A.A., Model of solar wind in the heliosphere at low and high latitudes, Plasma Phys. Rep., 2018, vol. 44, no. 1, pp. 80–91.ADSCrossRefGoogle Scholar
  42. 42.
    Crooker, N.U., Siscoe, G.L., Shodhan, S., et al., Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 1993, vol. 98, no. A6, pp. 9371–9381.ADSCrossRefGoogle Scholar
  43. 43.
    Bazilevskaya, G.A., Cliver, E.W., Kovaltsov, G.A., et al., Solar cycle in the heliosphere and cosmic rays, Space Sci. Rev., 2014, vol. 186, nos. 1–4, pp. 409–435.ADSCrossRefGoogle Scholar
  44. 44.
    Eselevich, V.G. and Fainshtein, V.G., The Heliospheric Current Sheet (HCS) and high-speed solar wind: Interaction effects, Planet. Space Sci., 1991, vol. 39, no. 8, pp. 1123–1131.ADSCrossRefGoogle Scholar
  45. 45.
    De Keyser, J., Roth, M., Forsyth, R., and Reisenfeld, D., Ulysses observations of sector boundaries at aphelion, J. Geophys. Res., 2000, vol. 105, no. A7, pp. 15689–15698.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Maiewski
    • 1
  • R. A. Kislov
    • 2
    • 4
  • Kh. V. Malova
    • 2
    • 3
  • O. V. Khabarova
    • 4
  • V. Yu. Popov
    • 5
    • 6
  • A. A. Petrukovich
    • 2
  1. 1.Financial University under the Government of the Russian FederationMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  4. 4.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesTroitskRussia
  5. 5.Faculty of Physics, Moscow State UniversityMoscowRussia
  6. 6.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations