Advertisement

Cosmic Research

, Volume 56, Issue 6, pp 426–433 | Cite as

Relationship between the Parameters of Various Solar Wind Types and Geomagnetic Activity Indices

  • L. A. Dremukhina
  • I. G. Lodkina
  • Yu. I. Yermolaev
Article
  • 11 Downloads

Abstract

This paper analyzes the correlation between planetary indices of geomagnetic activity Dst, ap, and AE and the values of coupling functions, calculated from data on plasma and magnetic field parameters during four types of solar wind (SW) streams: the regions of interaction of streams with different velocities (co-rotating interaction region—CIR), interplanetary manifestations of coronal mass ejections ICMEs (MC and Ejecta), and the Sheath compression regions in front of MC and Ejecta. To select SW types, we used data from ftp://ftp.iki.rssi.ru/pub/omni/ for 1995–2016, in which 744 CIR, 118 MC, 501 Sheath, and 843 Ejectaevents were identified. The coupling functions were calculated based on the OMNI data base. The analysis has shown low values of correlation coefficients (R < 0.5) between the coupling functions and Dst index for all SW types. For the ap and AE indices, a rather strong correlation with coupling functions (0.6 < R < 0.82) was obtained for all SW types. The geoeffectiveness of coupling functions, estimated from the values of linear regression coefficients, has the highest values for the ap index for the Sheath and MC SW types. For the auroral AE index, the highest values of coupling function efficiencies were obtained for the CIR and Ejecta SW types.

Notes

ACKNOWLEDGMENTS

The authors express their gratitude for the possibility of using the OMNI database.

The OMNI data were obtained from the website (http://omniweb.gsfc.nasa.gov). The study was supported by the Russian Foundation for Basic Research, project no. 16-02-00125.

REFERENCES

  1. 1.
    Akasofu, S.-I., Solar-wind disturbances and the solar wind-magnetosphere energy coupling function, Sol. Space Sci. Rev., 1983, vol. 34, pp. 173–183.ADSGoogle Scholar
  2. 2.
    Perreault, P. and Akasofu, S.-I., A study of geomagnetic storms, Geophys. J. Int., 1978, vol. 54, pp. 547–573. doi 10.1111/j.1365-246X.1978.tb05494.xADSCrossRefGoogle Scholar
  3. 3.
    Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.ADSCrossRefGoogle Scholar
  4. 4.
    Kane, R.P., How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms?, J. Geophys. Res., 2007, vol. 110. doi 10.1029/2004JA010799Google Scholar
  5. 5.
    Smart, D.F., Garrett, N.B., and Shea, M.A., The prediction of AE, ap, Dst at time lags between 0 and 30 hours, Sol.-Terr. Predict. Proc., 1980, vol. 2, pp. 399–414.Google Scholar
  6. 6.
    Maezawa, K. and Nishida, A., Inferences of solar wind velocity from geomagnetic indices, J. Geomagn. Geoelectr., 1978, vol. 30, pp. 205–205.ADSCrossRefGoogle Scholar
  7. 7.
    Crooker, N.V., Feynman, J., and Gosling, J.T., On the high correlation between long-term averages of solar wind speed and geomagnetic activity, J. Geophys. Res., 1977, vol. 82, pp. 1933–1937.ADSCrossRefGoogle Scholar
  8. 8.
    Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. doi 10.1029/2006JA012015ADSGoogle Scholar
  9. 9.
    Kan, J.R. and Lee, L.C., Energy coupling function and solar wind–magnetosphere dynamo, Geophys. Res. Lett., 1979, vol. 6, pp. 577–580.ADSCrossRefGoogle Scholar
  10. 10.
    Hardy, D.A., Burke, W.J., Gussenhoven, M.S., Heinemann, N., and Holeman, E., DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to the solar wind velocity and north–south component of the interplanetary magnetic field, J. Geophys. Res., 1981, vol. 86, no. A12, pp. 9961–9974.ADSCrossRefGoogle Scholar
  11. 11.
    Holzer, R.E. and Slavin, J.A., An evaluation of three predictors of geomagnetic activity, J. Geophys. Res., 1982, vol. 87, no. A4, pp. 2558–2562.ADSCrossRefGoogle Scholar
  12. 12.
    Wygant, J.R., Torbert, R.B., and Mozer, F.S., Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 1983, vol. 88, pp. 5727–5735.ADSCrossRefGoogle Scholar
  13. 13.
    Borovsky, J.E. and Birn, J., The solar wind electric field does not control the dayside reconnection rate, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 2, pp. 751–760. doi 10.1002/2013JA019193ADSCrossRefGoogle Scholar
  14. 14.
    Borovsky, J.E., Canonical correlation analysis of the combined solar-wind and geomagnetic-index data sets, J. Geophys. Res., 2014, vol. 119, no. 7, pp. 5364–5381. doi 10.1002/2013JA019607CrossRefGoogle Scholar
  15. 15.
    Borovsky, J.E., The rudiments of a theory of solar-wind/magnetosphere coupling derived from first principles, J. Geophys. Res., 2008, vol. 113, A08228. doi 10.1029/2007JA012646ADSGoogle Scholar
  16. 16.
    Borovsky, J.E., Physical improvements to the solar-wind reconnection control function for the Earth’s magnetosphere, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 2113–2121. doi 10.1002/jgra.50110ADSCrossRefGoogle Scholar
  17. 17.
    Borovsky, J.E., Physics based solar-wind driver functions for the magnetosphere: combining the reconnection-coupled MHD generator with the viscous interaction, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 7119–7150. doi 10.1002/jgra.50557ADSCrossRefGoogle Scholar
  18. 18.
    Gonzalez, W.D., Tsurutani, B.T., and Clua de Gonzalez, A.L., Interplanetary origin of geomagnetic storms, Space Sci. Rev., 1999, vol. 88, pp. 529–562.ADSCrossRefGoogle Scholar
  19. 19.
    Huttunen, K.E.J. and Koskinen, H.E.J., Importance of postshock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 2004, vol. 22, pp. 1729–1738. doi 10.5194/angeo-22-1729-2004ADSCrossRefGoogle Scholar
  20. 20.
    Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.ADSCrossRefGoogle Scholar
  21. 21.
    Borovsky, J.E. and Denton, M.H., Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 2006, vol. 28, pp. 121–190.Google Scholar
  22. 22.
    Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K., Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions, Geophys. Res. Lett., 2006, vol. 33, L06107. doi 10.1029/2005GL024894ADSCrossRefGoogle Scholar
  23. 23.
    Pulkkinen, T.I., Partamies, N., Huttunen, K.E.J., Reeves, G.D., and Koskinen, H.E.J., Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 2007, vol. 34, L02105. doi 10.1029/2006GL027775ADSGoogle Scholar
  24. 24.
    Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1023–1031.ADSCrossRefGoogle Scholar
  25. 25.
    Longden, N., Denton, M.H., and Honary, F., Particle precipitation during ICME-driven and CIR-driven geomagnetic storms, J. Geophys. Res., 2008, vol. 113, A06205. doi 10.1029/2007JA012752ADSCrossRefGoogle Scholar
  26. 26.
    Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Geoeffectiveness and efficiency of CIR, sheath and ICME in generation of magnetic storms, J. Geophys. Res., 2012, vol. 117, A00L07. doi 10.1029/2011JA017139ADSGoogle Scholar
  27. 27.
    Nikolaeva, N.S., Yermolaev, Y.I., and Lodkina, I.G., Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream, Adv. Space Res., 2015, vol. 56, no. 7, pp. 1366–1373. doi 10.1016/j.asr.2015.06.029ADSCrossRefGoogle Scholar
  28. 28.
    Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 2010, vol. 28, pp. 2177–2186. doi 10.5194/angeo-28-2177-2010ADSCrossRefGoogle Scholar
  29. 29.
    Plotnikov, I.Y. and Barkova, E.S., Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds, Adv. Space Res., 2007, vol. 40, pp. 1858–1862.ADSCrossRefGoogle Scholar
  30. 30.
    Despirak, I.V., Lubchich, A.A., Yahnin, A.G., et al., Development of substorm bulges during different solar wind structures, Ann. Geophys., 2009, vol. 27, no. 5, pp. 1951–1960.ADSCrossRefGoogle Scholar
  31. 31.
    McPherron, R.L., Kepko, L., Pulkkinen, T.I., et al., Changes in the response of the AL index with solar cycle and epoch within a corotating interaction region, Ann. Geophys., 2009, vol. 27, pp. 3165–3178.ADSCrossRefGoogle Scholar
  32. 32.
    Boroyev, R.N. and Vasiliev, M.S., Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events, Adv. Space Res., 2018, vol. 61, no. 1, pp. 348–354. doi 10.1016/j.astr.2017.10.031ADSCrossRefGoogle Scholar
  33. 33.
    Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 49–65.Google Scholar
  34. 34.
    Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Does magnetic storm generation depend on the solar wind type?, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 512–518.Google Scholar
  35. 35.
    Despirak, I., Lubchich, A., and Kleimenova, N., High-latitude magnetic substorms under different types of the solar wind large-scale structure, Sun Geosphere, 2018, vol. 13, no. 1, pp. 57–61.ADSGoogle Scholar
  36. 36.
    King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data, J. Geophys. Res., 2005, vol. 110, A02104. doi 10.1029/2004JA010649ADSCrossRefGoogle Scholar
  37. 37.
    Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res., 2015, vol. 120, no. 9, pp. 7094–7106. doi 10.1002/2015JA021274CrossRefGoogle Scholar
  38. 38.
    Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta, Sol. Phys., 2017, vol. 292, no. 12, id 193. doi 10.1007/s11207-017-1205-1Google Scholar
  39. 39.
    Temerin, M. and Li, X., Dst model for 1995–2002, J. Geophys. Res., 2006, vol. 111, A04221. doi 10.1029/2005JA011257ADSCrossRefGoogle Scholar
  40. 40.
    Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Modeling the time behavior of the Dst index during the main phase of magnetic storms generated by various types of solar wind, Cosmic Res., 2013, vol. 51, no. 6, pp. 401–412.ADSCrossRefGoogle Scholar
  41. 41.
    Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 2015, vol. 53, no. 2, pp. 119–127.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesTroitskMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations