Cosmic Research

, Volume 55, Issue 1, pp 57–66 | Cite as

Heating and acceleration of charged particles during magnetic dipolarizations

  • E. E. GrigorenkoEmail author
  • E. A. Kronberg
  • P. W. Daly


In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (T p/T e) was ~6–7. At the time of the observation of the first dipolarization front T p/T e decreases by up to ~3–4. The minimum value T p/T e (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in T p/T e observed at this time are associated with an increase in T e, whereas the proton temperature either decreases or remains unchanged. Decreases of the value T p/T e during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency f ce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lui, A.T.Y., Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., 2004, vol. 113, pp. 127–206.ADSCrossRefGoogle Scholar
  2. 2.
    Sitnov, M.I., Swisdak, M., and Divin, A.V., Dipolarization fronts as a signature of transient reconnection in the magnetotail, J. Geophys. Res., 2009, vol. 114, A04202. doi 10.1029/02008JA013980ADSCrossRefGoogle Scholar
  3. 3.
    Nakamura, R., Baumjohann, W., Klecker, B., et al., Motion of the dipolarization front during a flow burst event observed by Cluster, Geophys. Res. Lett., 2002, vol. 29, no. 20, pp 3-1–3-4.CrossRefGoogle Scholar
  4. 4.
    Runov, A., Angelopoulos, V., Sitnov, M., et al., Dipolarization fronts in the magnetotail plasma sheet, Planet. Space Sci., 2011, vol. 59, no. 7, pp. 517–525. doi 10.1016/j.pss2010.06.006ADSCrossRefGoogle Scholar
  5. 5.
    Sergeev, V.A., Nikolaev, A.V., Tsyganenko, N.A., et al., Testing a two-loop pattern of the substorm current wedge (SCW2L), J. Geophys. Res., 2014, vol. 119, no. 2, pp. 947–963. doi 10.1002/2013JA019629CrossRefGoogle Scholar
  6. 6.
    Sergeev, V.A., Angelopoulos, V., and Nakamura, R., Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 2012, vol. 39, L05101. doi 10.1029/2012GL050859ADSCrossRefGoogle Scholar
  7. 7.
    Lui, A.T.Y., Yoon, P.H., Mok, C., and Ryu, C.-M., Inverse cascade feature in current disruption, J. Geophys. Res., 2008, vol. 113, A00C06. doi 10.1029/2008JA013521ADSGoogle Scholar
  8. 8.
    Le Contel, O., et al., Quasi-parallel whistler mode waves observed by THEMIS during near-Earth dipolarizations, Ann. Geophys., 2009, vol. 27, pp. 2259–2275.ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, M., Ashour-Abdalla, M., Deng, X., et al., THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near- Earth magnetotail, Geophys. Res. Lett., 2009, vol. 36, L20107. doi 10.1029/2009GL040663Google Scholar
  10. 10.
    Baumjohann, W., Paschmann, G., and Cattell, C.A., Average plasma properties in the central plasma sheet, J. Geophys. Res., 1989, vol. 94, pp. 6597–6606. doi 10.1029/JA094iA06p06597ADSCrossRefGoogle Scholar
  11. 11.
    Wang, C.-P., Gkioulidou, M., Lyons, L.R., and Angelopoulos, V., Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet, J. Geophys. Res., 2012, vol. 117, A08215. doi 10.1029/2012JA017658Google Scholar
  12. 12.
    Sharma, S., Nakamura, R., Runov, A., et al., Transient and localized processes in the magnetotail: A review, Ann. Geophys., 2008, vol. 26, pp. 955–1006.ADSCrossRefGoogle Scholar
  13. 13.
    Delcourt, D.C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol.- Terr. Phys., 2002, vol. 64, nos. 5–6, pp. 551–559.ADSCrossRefGoogle Scholar
  14. 14.
    Grigorenko, E.E., Malykhin, A.Yu., Kronberg, E.A., et al., Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures, J. Geophys. Res., 2015, vol. 120, no. 8, pp. 6541–6558. doi 10.1002/2015JA021314CrossRefGoogle Scholar
  15. 15.
    Artemyev, A.V., Zelenyi, L.M., Malova, H.V., et al., Acceleration and transport of ions in turbulent current sheets: Formation of non-Maxwellian energy distribution, Nonlinear Processes Geophys., 2009, vol. 16, pp. 631–639.ADSCrossRefGoogle Scholar
  16. 16.
    Kronberg, E.A., Grigorenko, E.E., Haaland, S.E., et al., Distributions of energetic oxygen and hydrogen in the near-Earth plasma sheet, J. Geophys. Res., 2015, vol. 120, no. 5, pp. 3415–3431. doi 10.1002/2014JA020882CrossRefGoogle Scholar
  17. 17.
    Rème, H., Aoustin, C., Bosqued, J.M., et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with identical cluster ion spectrometry (CIS) experiment, Ann. Geophys., 2001, vol. 19, pp. 1303–1354.ADSCrossRefGoogle Scholar
  18. 18.
    Wilken, B., Daly, P.W., Mall, U., et al., First results from the RAPID imaging energetic particle spectrometer on board Cluster, Ann. Geophys., 2001, vol. 19, pp. 1355–1366.ADSCrossRefGoogle Scholar
  19. 19.
    Johnstone, A.D., Alsop, C., Burge, S., et al., PEACE: A plasma electron and current experiment, Space Sci. Rev., 1997, vol. 79, no. 1, pp. 351–398.ADSCrossRefGoogle Scholar
  20. 20.
    Balogh, A., Carr, C.M., Acuña, M.H., et al., The cluster magnetic field investigation: Overview of in-flight performance and initial results, Ann. Geophys., 2001, vol. 19, pp. 1207–1217.ADSCrossRefGoogle Scholar
  21. 21.
    Daly, P.W. and Kronberg, E.A., User guide to the RAPID measurements in the Cluster Active Archive (CAA), Tech. Rep. CAA-EST-UG-RAP, Paris, European Space Agency, 2015.Google Scholar
  22. 22.
    Kronberg, E.A., Grigorenko, E.E., Haaland, S.E., et al., Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet, J. Geophys. Res., 2015, vol. 120, no. 5, pp. 3415–3431. doi 10.1029/2014JA020882CrossRefGoogle Scholar
  23. 23.
    Fu, H.S., Khotyaintsev, Y.V., André, M., and Vaivads, A., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 2011, vol. 38, L16104. doi 10.1029/2011GL048528Google Scholar
  24. 24.
    Runov, A., Angelopoulos, V. Gabrielse, C., et al., Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles, J. Geophys. Res., 2015, vol. 120, no. 6, pp. 4369–4383. doi 10.1002/2015JA021166CrossRefGoogle Scholar
  25. 25.
    Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., et al., First results obtained by the Cluster staff experiment, Ann. Geophys., 2003, vol. 21, pp. 437–456.ADSCrossRefGoogle Scholar
  26. 26.
    Petkaki, P., Freeman, M.P., and Walsh, A.P., Cluster observations of broadband electromagnetic waves in and around a reconnection region in the Earth’s magnetotail current sheet, Geophys. Res. Lett., 2006, vol. 33, L16105. doi 10.1029/2006GL027066ADSCrossRefGoogle Scholar
  27. 27.
    Kaufmann, R.L., Paterson, W.R., and Frank, L.A., Relationships between the ion flow speed, magnetic flux transport rate, and other plasma sheet parameters, J. Geophys. Res., 2005, vol. 110, A09216. doi 10.1029/2005JA011068ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. E. Grigorenko
    • 1
    Email author
  • E. A. Kronberg
    • 2
    • 3
  • P. W. Daly
    • 2
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Max Planck Institute for Solar System ResearchGöttingenGermany
  3. 3.Ludwig-Maximilian University of MunichMunichGermany

Personalised recommendations