Cosmic Research

, Volume 55, Issue 1, pp 1–11 | Cite as

Study of the magnetospheres of active regions on the sun by radio astronomy techniques

  • V. M. Bogod
  • T. I. Kal’tman
  • N. G. Peterova
  • L. V. Yasnov


In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere–corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomczyk, S., Zhang, J., Bastian, T., and Leibacher, J., Preface, Sol. Phys., 2013, vol. 288, no. 2, pp. 463–465.ADSCrossRefGoogle Scholar
  2. 2.
    Akhmedov, S.B., Gelfreikh, G.B., Bogod, V.M., and Korzhavin, A.N., The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission, Sol. Phys., 1982, vol. 79, no. 1, pp. 41–58.ADSCrossRefGoogle Scholar
  3. 3.
    Bogod, V.M. and Gelfreikh, G.B., Measurements of the magnetic field and the gradient of temperature in the solar atmosphere above a floccules using radio observations, Sol. Phys., 1980, vol. 67, no. 1, pp. 29–46.ADSCrossRefGoogle Scholar
  4. 4.
    Nita, G.M., Gary, D.E., and Lee, J., Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array, Astrophys. J., 2011, vol. 605, no. 1, pp. 528–545.ADSCrossRefGoogle Scholar
  5. 5.
    Grebinskij, A., Bogod, V., Gelfreikh, G., et al., Microwave tomography of the solar magnetic fields, Astron. Astrophys. Suppl. Ser., 2000, vol. 144, pp. 169–180.ADSCrossRefGoogle Scholar
  6. 6.
    Iwai, K. and Shibasaki, K., Measurements of coronal and chromospheric magnetic fields using polarization observations by the Nobeyama Radioheliograph, Publ. Astron. Soc. Jpn., 2013, vol. 65, no. SP1, pp. S14-1–S14-7.Google Scholar
  7. 7.
    Ryabov, B.I., Maximov, V.P., Lesovoi, S.V., et al., Coronal magnetography of solar active region 8365 with the SSRT and NoRH radio heliographs, Sol. Phys., 2005, vol. 226, no. 2, pp. 223–237.ADSCrossRefGoogle Scholar
  8. 8.
    Bogod, V.M. and Yasnov, L.V., On the comparison of radio-astronomical measurements of the height structure of magnetic field with results of model approximations, Astrophys. Bull., 2009, vol. 64, no. 4, pp. 372–385.ADSCrossRefGoogle Scholar
  9. 9.
    Lang, K.R., Willson, R.F., Kile, J.N., et al., Magnetospheres of solar active regions inferred from spectralpolarization observations with high spatial resolution, Astrophys. J., 1993, vol. 419, pp. 398–417.ADSCrossRefGoogle Scholar
  10. 10.
    Gelfreikh, G.B., Spectral polarization study of the magnetospheres of the solar active regions using RATAN-600, ASP Conf. Ser., 1996, vol. 93, pp. 415–421.ADSGoogle Scholar
  11. 11.
    Bogod, V.M. and Yasnov, L.V., Detection of prolonged, extremely faint decimeter bursts on the Sun, Astron. Rep., 2001, vol. 45, no. 8, pp. 643–651.ADSCrossRefGoogle Scholar
  12. 12.
    Willson, R.F., Very Large Array and SOHO observations of type I noise storms, large-scale loops and magnetic restructuring in the corona, Sol. Phys., 2005, vol. 227, no. 2, pp. 311–326.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bogod, V.M., Gelfreikh, G.B., Willson R.E., et al., Very Large Array–RATAN 600 observation of a solar active region, Sol. Phys., 1992, vol. 141, no. 2, pp. 303–323.ADSCrossRefGoogle Scholar
  14. 14.
    Bogod, V.M., Garaimov, V.I., Gelfreikh, G.B., et al., Noise storms and structure of microwave emission of solar active regions, Sol. Phys., 1995, vol. 160, no. 1, pp. 133–149.ADSCrossRefGoogle Scholar
  15. 15.
    Bogod, V.M., Mercier, C., and Yasnov, L.V., About the nature of long-term microflare energy release in the solar active regions, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25353–25360.ADSCrossRefGoogle Scholar
  16. 16.
    Yasnov, L.V., Bogod, V.M., Fu, Q., and Yan, Y., A study of nonthermal radio emission features using fine spectral BAO and high-sensitivity RATAN observations of the solar active region, Sol. Phys., 2003, vol. 215, no. 2, pp. 343–355.ADSCrossRefGoogle Scholar
  17. 17.
    Bogod, V., Garaimov, V., and Grebinskij, A., The study of prominence fine structure during RATAN-600–SOHO support program in September–October 1996, Sol. Phys., 1998, vol. 182, no. 1, pp. 139–143.ADSCrossRefGoogle Scholar
  18. 18.
    Ryabov, B.I., Pilyeva, N.A., Alissandrakis, C.E., et al., Coronal magnetography of an active region from microwave polarization inversion, Sol. Phys., 1999, vol. 185, no. 1, pp. 157–175.ADSCrossRefGoogle Scholar
  19. 19.
    Gary, D.E. and Hurford, G.J., Coronal temperature, density, and magnetic field maps of a solar active region using the Owens Valley Solar Array, Astrophys. J., 1994, vol. 420, no. 2, pp. 903–912.ADSCrossRefGoogle Scholar
  20. 20.
    Wang, Z., Gary, D.E., Fleishman, G.D., and White, S.M., Coronal magnetography of a simulated solar active region from microwave imaging spectropolarimetry, Astrophys. J., 2015, vol. 805, no. 2, id 93.Google Scholar
  21. 21.
    Nita, G.M., Fleishman, G.D., Jing, J., et al., 3D structure of microwave sources from solar rotation stereoscopy vs magnetic extrapolations, Astrophys. J., 2011, vol. 737, no. 2, id 82.Google Scholar
  22. 22.
    Ryabov, B.I., Gary, D.E., Peterova, N.G., et al., Reduced coronal emission above large isolated sunspots, Sol. Phys., 2015, vol. 290, no. 1, pp. 21–35.ADSCrossRefGoogle Scholar
  23. 23.
    Bogod, V.M., Peterova, N.G., Ryabov, B.I., and Topchilo, N.A., On the recording of an emission with a reduced brightness in the region of a strong sunspot magnetic field, Cosmic Res., 2015, vol. 53, no. 1, pp. 10–20.ADSCrossRefGoogle Scholar
  24. 24.
    Bogod, V.M., Garaimov, V.I., Zheleznyakov, V.V., and Zlotnik, E.Ya., Detection of a cyclotron line in the radio spectrum of a solar active region and its interpretation, Astron. Rep., 2000, vol. 44, no. 4, pp. 271–277.ADSCrossRefGoogle Scholar
  25. 25.
    Korzhavin, A.N., Opeikina, L.V., and Peterova, N.G., Transition region above sunspots inferred from microwave observations, Astrophys. Bull., 2010, vol. 65, no. 1, pp. 60–74.ADSCrossRefGoogle Scholar
  26. 26.
    Tokhchukova, S.Kh. and Bogod, V.M., Detection of the long-term microwave “darkening” before the 14 July 2000 flare, Sol. Phys., 2003, vol. 212, no. 1, pp. 99–109.ADSCrossRefGoogle Scholar
  27. 27.
    Bogod, V.M. and Tokhchukova, S.Kh., Peculiarities of the microwave emission from active regions generating intense solar flares, Astron. Lett., 2003, vol. 29, no. 4, pp. 263–273.ADSCrossRefGoogle Scholar
  28. 28.
    Gizani, A.B., Alissandrakis, C.E., Bogod, V., et al., RATAN-600 observations of unusual inversion of polarization, Astron. Astrophys. Trans., 2001, vol. 20, no. 3, pp. 543–545.ADSCrossRefGoogle Scholar
  29. 29.
    Bogod, V.M. and Grebinskij, A.S., Large scale structure of atmosphere of the quiet Sun, coronal hole and plages as deduced by tomography study, Sol. Phys., 1997, vol. 176, no. 1, pp. 67–86.ADSCrossRefGoogle Scholar
  30. 30.
    Akhmedov, Sh.B., Borovik, V.N., Gelfreikh, G.B., et al., Structure of a solar active region from RATAN 600 and very large array observations, Astrophys. J., 1986, vol. 301, pp. 460–464.ADSCrossRefGoogle Scholar
  31. 31.
    Bogod, V.M. and Yasnov, L.V., The nature of decimeter- wave microburst emission, Astron. Rep., 2005, vol. 49, no. 2, pp. 144–154.ADSCrossRefGoogle Scholar
  32. 32.
    Akhmedov, Sh.B., Bogod, V.M., Borovik, V.N., et al., Structure of solar active regions according to Very Long Array and RATAN-600 observations in July 1982. 1. AR 3804, Bull. Spec. Astrophys. Obs., 1991, vol. 25, pp. 103–131.ADSGoogle Scholar
  33. 33.
    Alissandrakis, C.E., Gel’frejkh, G.B., Borovik, V.N., et al., Spectral observations of active region sources with RATAN-600 and WSRT, Astron. Astrophys., 1993, vol. 270, nos. 1–2, pp. 509–515.ADSGoogle Scholar
  34. 34.
    Sych, R.A., Uralov, A.M., and Korzhavin, A.N., Radio observations of compact solar sources located between sunspots, Sol. Phys., 1993, vol. 144, no. 1, pp. 59–68.ADSCrossRefGoogle Scholar
  35. 35.
    Uralov, A.M., Grechnev, V.V., Rudenko, G.V., et al., Microwave neutral line associated source and a current sheet, Sol. Phys., 2008, vol. 249, no. 2, pp. 315–335.ADSCrossRefGoogle Scholar
  36. 36.
    Bogod, V.M., Kaltman, T.I., and Yasnov, L.V., On properties of microwave sources located above the neutral line of radial magnetic field, Astrophys. Bull., 2012, vol. 67, no. 4, pp. 425–437.ADSCrossRefGoogle Scholar
  37. 37.
    Bogod, V.M., Yasnov, L.V., and Stupishin, A.G., Possible link between decimeter wave microbursts and noise storms, Astrophys. Bull., 2007, vol. 62, no. 4, pp. 369–377.ADSCrossRefGoogle Scholar
  38. 38.
    Yasnov, L.V., Bogod, V.M., and Stupishin, A.G., Long-lived microbursts in decimetric wavelength range and its connection with noise storms, Sol. Phys., 2008, vol. 249, no. 1, pp. 37–51.ADSCrossRefGoogle Scholar
  39. 39.
    Borovik, V.N., Kurbanov, M.Sh., Livshits, M.A., and Ryabov, B.I., Coronal holes against the background of the quiet Sun: Limb observations with the RATAN-600 radio telescope, Astron. Rep., 1993, vol. 37, no. 2, pp. 208–213.ADSGoogle Scholar
  40. 40.
    Prosovetsky, D.V., Grigor’eva, I.Yu., and Kochanov, A.A., Spectral characteristics of large-scale radio emission areas in coronal holes, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 7, pp. 867–870.ADSCrossRefGoogle Scholar
  41. 41.
    Peterova, N.G., Opeikina, L.V., and Topchilo, N.A., “Halo” type sources from microwave observations with high angular resolution, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 8, pp. 1053–1057.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. M. Bogod
    • 1
    • 3
  • T. I. Kal’tman
    • 1
  • N. G. Peterova
    • 1
  • L. V. Yasnov
    • 2
  1. 1.St. Petersburg Branch of the Special Astrophysical Observatory of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg University ITMOSt. PetersburgRussia

Personalised recommendations