Cosmic Research

, Volume 50, Issue 2, pp 103–115 | Cite as

Concentration of ions in the topside ionosphere as measured onboard the DEMETER satellite: Morphology and dependence on solar and geomagnetic activity

  • V. A. GladyshevEmail author
  • A. Yu. Shchekotov
  • N. V. Yagova
  • J. -J. Berthelier
  • M. Parrot
  • O. S. Akent’eva
  • L. N. Baranskii
  • E. N. Fedorov
  • T. M. Mulyarchik
  • O. A. Molchanov


Variations in concentration of ions H+, He+, and O+ are studied at a height of about 700 km using the data of continuous observations onboard the DEMETER satellite at the decline and in the minimum of solar activity from 2004 to 2008. Latitudinal distributions, seasonal behavior, and irregular variations in ion concentrations and their dependence on solar and geomagnetic activity are considered. Within this altitude range, for the first time an analysis is performed of the dataset of many-year continuous observations in both hemispheres from the equatorial to subauroral latitudes. This made it possible to describe the seasonal and irregular variations of the concentrations of main ion species with better time and spatial resolution than in the available empirical models. The dependence of concentrations of three types of ions on solar and geomagnetic activity is studied at time scales from several days to several years, and it is shown that the anti-phase change in concentrations of O+ and light ions known from publications is partly a result of mutual dependence of solar and geomagnetic activity and is observed only at time scales beginning from several months. At time scales from several days to several weeks, variations in the concentration of O+ and light ions are governed mainly by solar and geomagnetic activity, respectively.


Solar Activity Geomagnetic Activity Cosmic Research Solar Activity Cycle Topside Ionosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilitza, D. and Reinisch, B., International Reference Ionosphere 2007: Improvements and New Parameters, Adv. Space Res., 2008, vol. 42, p. 599.ADSCrossRefGoogle Scholar
  2. 2.
    Gonzalez, S.A. and Sulzer, M.P., Detection of He+ Layering in the Topside Ionosphere over Arecibo during Equinox Solar Minimum Conditions, Geophys. Res. Lett., 1996, vol. 23, p. 2509.ADSCrossRefGoogle Scholar
  3. 3.
    Iwamoto, I., Sagawa, E., and Watanabe, S., Dependence of the Topside Ion Composition on the Solar Flux and Its Implication to IRI Model, Adv. Space Res., 2000, vol. 25, p. 197.ADSCrossRefGoogle Scholar
  4. 4.
    Yue, X.A., Schreiner, W.S., Lei, J.H., et al., Climatology of Ionospheric Upper Transition Height Derived from COSMIC Satellites during the Solar Minimum of 2008, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, p. 1270.ADSCrossRefGoogle Scholar
  5. 5.
    Evans, J.V. and Holt, J.M., Nighttime Proton Fluxes at Millstone Hill, Planet. Space Sci., 1978, vol. 26, p. 727.ADSCrossRefGoogle Scholar
  6. 6.
    Gonzalez, S.A., Fejer, B.G., Heelis, R.A., and Hanson, W.B., Ion Composition of the Topside Equatorial Ionosphere during Solar Minimum, J. Geophys. Res., 1992, vol. 97, p. 4299.ADSCrossRefGoogle Scholar
  7. 7.
    Taylor, H., Jr., Brinton, H., Pharo, M., and Rahman, N., Thermal Ions in the Exosphere; Evidence of Solar and Geomagnetic Control, J. Geophys. Res., 1968, vol. 73, p. 5521.ADSCrossRefGoogle Scholar
  8. 8.
    Kutiev, I., Heelis, R., and Sanatani, S., The Behavior of the O+/H+ Transition Level at Solar Maximum, J. Geophys. Res., 1980, vol. 85, p. 2366.ADSCrossRefGoogle Scholar
  9. 9.
    Bankov, L., Heelis, R., Parrot, M., et al., WN4 Effect on Longitudinal Distribution of Different Ion Species in the Topside Ionosphere at Low Latitudes by Means of DEMETER, DMSP-F13, and DMSP-F15 Data, Ann. Geophys., 2009, vol. 27, p. 2893.ADSCrossRefGoogle Scholar
  10. 10.
    Truhlik, V., Triskova, L., and Smilauer, J., Manifestation of Solar Activity in the Global Topside Ion Composition—A Study Based on Satellite Data, Ann. Geophys., 2005, vol. 23, p. 2511.ADSCrossRefGoogle Scholar
  11. 11.
    Triskova, L., Truhlik, V., and Smilauer, J., An Empirical Model of Ion Composition in the Outer Ionosphere, Adv. Space Res., 2003, vol. 31, p. 653.ADSCrossRefGoogle Scholar
  12. 12.
    Triskova, L., Truhlik, V., and Smilauer, J., On Possible Improvements of Outer Ionosphere Ion Composition Model in IRI, Adv. Space Res., 2002, vol. 29, p. 849.ADSCrossRefGoogle Scholar
  13. 13.
    Triskova, L., Truhlik, V., and Smilauer, J., Study of Major Ions Distribution in the Outer Ionosphere in the Solar Maximum, Adv. Space Res., 2000, vol. 25, p. 193.ADSCrossRefGoogle Scholar
  14. 14.
    Gonzalez, S.A., Sulzer, M.P., Nicolls, M.J., and Kerr, R.B., Solar Cycle Variability of Nighttime Topside Helium Ion Concentrations over Arecibo, J. Geophys. Res., 2004, vol. 109, p. A07302. doi: 10.1029/2003JA010100.ADSCrossRefGoogle Scholar
  15. 15.
    Craven, P.D., Comfort, R.H., Richards, P.G., and Grebowsky, J.M., Comparisons of Modeled N+, O+, H+, and He+ in the Midlatitude Ionosphere with Mean Densities and Temperatures from Atmosphere Explorer, J. Geophys. Res., 1995, vol. 100, p. 257.ADSCrossRefGoogle Scholar
  16. 16.
    Richards, P. and Torr, D., Seasonal, Diurnal, and Solar Cyclical Variations of the Limiting H+ Flux in the Earth’s Topside Ionosphere, J. Geophys. Res., 1985, vol. 90, p. 5261.ADSCrossRefGoogle Scholar
  17. 17.
    Borgohain, A. and Bhuyan, P.K., Solar Cycle Variation of Ion Densities Measured by SROSS C2 and FOR-MOSAT-1 over Indian Low and Equatorial Latitudes, J. Geophys. Res., 2010, vol. 115, p. A04309. doi: 10.1029/2009JA014424.ADSCrossRefGoogle Scholar
  18. 18.
    Berthelier, J.-J., Godefroy, M., and Leblanc, F., et at., IAP, the Thermal Plasma Analyzer on DEMETER, Planet. Space Sci., 2006, vol. 54, p. 487.ADSCrossRefGoogle Scholar
  19. 19.
    Cussac, T., Clair, M.-A., Ultre-Guerard, P., et al., The Demeter Microsatellite and Ground Segment, Planet. Space Sci., 2006, vol. 54, p. 413.ADSCrossRefGoogle Scholar
  20. 20.
    Bowen, P.J., Boyd, R.L.F., Raitt, W.J., and Willmore, A.P., Ion Composition of the Upper F-Region, Proc. R. Soc. London, Ser. A, 1964, vol. 281, p. 504.ADSCrossRefGoogle Scholar
  21. 21.
    Hoegy, W.R., Grebowsky, J.M., and Brace, L.H., Ionospheric Ion Composition from Satellite Measurements Made during 1970–1980: Altitude Profiles, Adv. Space Res. 91, vol. 11, p. 173.Google Scholar
  22. 22.
    Seran, E., Frey, H.U., Fillingim, M., et al., Demeter High Resolution Observations of the Ionospheric Thermal Plasma Response to Magnetospheric Energy Input during the Magnetic Storm of November 2004, Ann. Geophys., 2007, vol. 25, p. 2503.ADSCrossRefGoogle Scholar
  23. 23.
    Horwitz, J., Brace, L., Comfort, R., and Chappell, C., Dual-Spacecraft Measurements of Plasmasphere-Ionosphere Coupling, J. Geophys. Res., 1986, vol. 91, p. 11203.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. A. Gladyshev
    • 1
    • 2
    Email author
  • A. Yu. Shchekotov
    • 1
  • N. V. Yagova
    • 1
  • J. -J. Berthelier
    • 3
  • M. Parrot
    • 4
  • O. S. Akent’eva
    • 2
  • L. N. Baranskii
    • 1
  • E. N. Fedorov
    • 1
  • T. M. Mulyarchik
    • 2
  • O. A. Molchanov
    • 1
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.CETP/IPSLSaint-MaurFrance
  4. 4.LPCE/CNRSOrleans cedex 02France

Personalised recommendations