Cosmic Research

, Volume 50, Issue 1, pp 21–31

A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere

  • V. N. Gubenko
  • A. G. Pavelyev
  • R. R. Salimzyanov
  • V. E. Andreev


A method for determination of internal gravity wave (IGW) parameters from a single vertical temperature or density profile measurement in the Earth’s atmosphere has been developed. This method may be used for the analysis of profiles measured by any techniques in which the accuracy is enough to measure small (∼1%) amplitudes of the temperature or density fluctuations in the atmosphere. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied then analyzed fluctuations can be considered as wave-induced. The method is based upon the analysis of relative amplitude thresholds of the temperature or density wave field and upon linear IGW saturation theory in which amplitude thresholds are restricted by dynamical instability processes in the atmosphere. In order to approbate the method we have used data of simultaneous radiosonde measurements of the temperature and wind velocity in the Earth’s stratosphere where the saturated IGW propagation has been detected. It is shown that the application of the method to radio occultation temperature data gives the possibility to identify IGWs in the Earth’s lower stratosphere and to determine values of key wave parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurvich, A.S. and Kan, V., Structure of Air Density Irregularities in the Stratosphere from Spacecraft Observations of Stellar Scintillation: 1. Three-Dimensional Spectrum Model and Recovery of Its Parameters, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2003, vol. 39, no. 3, pp. 335–346.Google Scholar
  2. 2.
    Gurvich, A.S. and Kan, V., Structure of Air Density Irregularities in the Stratosphere from Spacecraft Observations of Stellar Scintillation: 2. Characteristic Scales, Structure Characteristics, and Kinetic Energy Dissipations, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2003, vol. 39, no. 3, pp. 347–358.Google Scholar
  3. 3.
    Sofieva, V.F., Gurvich, A.S., Dalaudier, F., and Kan, V., Reconstruction of Internal Gravity Wave and Turbulence Parameters in the Stratosphere Using GOMOS Scintillation Measurements, J. Geophys. Res., 2007, vol. 112, no. D12113. doi: 10.1029/2006JD007483.Google Scholar
  4. 4.
    Steiner, A.K. and Kirchengast, G., GW Spectra from GPS/MET Occultation Observations, J. Atmos. Ocean. Tech, 2000, vol. 17, pp. 495–503.CrossRefGoogle Scholar
  5. 5.
    Tsuda, T. and Hocke, K., Vertical Wave Number Spectrum of Temperature Fluctuations in the Stratosphere Using GPS Occultation Data, J. Meteorol. Soc. Japan, 2002, vol. 80, no. 4B, pp. 1–13.CrossRefGoogle Scholar
  6. 6.
    Tsuda, T., Nishida, M., Rocken, C., and Ware, R.H., A Global Morphology of GW Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET), J. Geophys. Res., 2000, vol. 105, pp. 7257–7273.ADSCrossRefGoogle Scholar
  7. 7.
    Fritts, D.C. and Alexander, M.J., Gravity Wave Dynamics and Effects in the Middle Atmosphere, Rev. Geophys., 2003, vol. 41, no. 1, p. 1003. doi: 10.1029/2001RG000106.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Gurvich, A.S. and Yakushkin, I.G., Spacecraft Observations of Quasi-Periodic Structures in the Stratosphere, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2004, vol. 40, no. 6, pp. 737–746.Google Scholar
  9. 9.
    Gurvich, A. and Chunchuzov, I., Estimates of Characteristic Scales in the Spectrum of Internal Waves in the Stratosphere Obtained from Space Observations of Stellar Scintillations, J. Geophys. Res., 2005, vol. 110, no. D03114. doi: 10.1029/2004JD005199.Google Scholar
  10. 10.
    Cot, C. and Barat, J., Wave-Turbulence Interaction in the Stratosphere: A Case Study, J. Geophys. Res., 1986, vol. 91, no. D2, pp. 2749–2756.ADSCrossRefGoogle Scholar
  11. 11.
    Pavelyev, A.G., Liou, Y.A., Wickert, J., et al., New Applications and Advances of the GPS Radio Occultation Technology as Recovered by Analysis of the FOR-MOSAT-3/COSMIC and CHAMP Data Base, in New Horizons in Occultation Research. Studies in Atmosphere and Climate, Steiner, A., Pirscher, B., Foelsche, U., and Kirchengast, G., Eds., Berlin-Heidelberg: Springer, 2009.Google Scholar
  12. 12.
    Gill, A.E., Atmosphere-Ocean Dynamics, London: Academic, 1982. Translated under the title Dinamika atmosfery i okeana, Moscow: Mir, 1986, vol. 1.Google Scholar
  13. 13.
    Ern, M., Preusse, P., Alexander, M.J., and Warner, C.D., Absolute Values of Gravity Wave Momentum Flux Derived from Satellite Data, J. Geophys. Res., 2004, vol. 109, no. D20103. doi: 10.1029/2004JD004752.Google Scholar
  14. 14.
    Gardner, C.S., Franke, S.J., Yang, W., Tao, X., and Yu, J.R., Interpretation of Gravity Waves Observed in the Mesopause Region at Starfire Optical Range, New Mexico: Strong Evidence for Nonseparable Intrinsic (m, ω) Spectra, J. Geophys. Res., 1998, vol. 103, no. D8, pp. 8699–8713.ADSCrossRefGoogle Scholar
  15. 15.
    Gavrilov, N.M. and Karpova, N.V., Global Structure of Atmospheric Mesoscale Variability from Satellite Measurements of Radiowave Refraction, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2004, vol. 40, no. 6, pp. 747–758.Google Scholar
  16. 16.
    Lindzen, R.S., Dynamics in Atmospheric Physics, Cambridge Univ. Press, 1990.Google Scholar
  17. 17.
    Eckermann, S.D., Hirota, I., and Hocking, W.K., Gravity Wave and Equatorial Wave Morphology of the Stratosphere Derived from Long-Term Rocket Soundings, Q.J.R. Meteorol. Soc., 1995, vol. 121, pp. 149–186.ADSCrossRefGoogle Scholar
  18. 18.
    Gavrilov, N.M., Parametrization of Momentum and Energy Depositions from Gravity Waves Generated by Tropospheric Hydrodynamic Sources, Ann. Geophys., 1997, vol. 15, pp. 1570–1580.ADSCrossRefGoogle Scholar
  19. 19.
    Gubenko, V.N., Pavelyev, A.G., and Andreev, V.E., Determination of the Intrinsic Frequency and Other Wave Parameters from a Single Vertical Temperature or Density Profile Measurement, J. Geophys. Res., 2008, vol. 113, no. D08109. doi: 10.1029/2007JD008920.Google Scholar
  20. 20.
    Pavelyev, A.G., Wickert, J., Schmidt, T., et al., Radio Holographic Methods for Atmospheric, Ionospheric, and Stratospheric Waves, Scientific Technical Report STR04/18, Geo Forschungs Zentrum (GFZ). http://, 2004.
  21. 21.
    Fritts, D.C., Gravity Wave Saturation in the Middle Atmosphere: A Review of Theory and Observations, Rev. Geophys. Space Phys., 1984, vol. 22, pp. 275–308.ADSCrossRefGoogle Scholar
  22. 22.
    Fritts, D.C. and Rastogi, P.K., Convective and Dynamical Instabilities due to Gravity Motions in the Lower and Middle Atmosphere: Theory and Observations, Radio Sci., 1985, vol. 20, no. 6, pp. 1247–1277.ADSCrossRefGoogle Scholar
  23. 23.
    Gossard, E.E. and Hooke, W.H., Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation, Amsterdam and New York: Elsevier Scientific Pub. Co., 1975. Translated under the title Volny v atmosfere, Moscow: Mir, 1978.Google Scholar
  24. 24.
    Dunkerton, T.J., Inertia-Gravity Waves in the Stratosphere, J. Atmos. Sci., 1984, vol. 41, pp. 3396–3404.ADSCrossRefGoogle Scholar
  25. 25.
    Fritts, D.C., A Review of Gravity Wave Saturation Processes, Effects, and Variability in the Middle Atmosphere, Pure Appl. Geophys., 1989, vol. 130, pp. 343–371.ADSCrossRefGoogle Scholar
  26. 26.
    Dunkerton, T.J., Theory of Internal Gravity Wave Saturation, Pure Appl. Geophys., 1989, vol. 130, pp. 373–397.ADSCrossRefGoogle Scholar
  27. 27.
    Sidi, C. and Barat, J., Observational Evidence of an Internal Wind Structure in the Stratosphere, J. Geophys. Res., 1986, vol. 91, pp. 1209–1217.ADSCrossRefGoogle Scholar
  28. 28.
    Marquardt, C. and Healy, S.B., Measurement Noise and Stratospheric Gravity Wave Characteristics Obtained from GPS Occultation Data, J. Meteorol. Soc. Japan, 2005, vol. 83, no. 3, pp. 417–428.CrossRefGoogle Scholar
  29. 29.
    LeLong, M.-P. and Dunkerton, T.J., Inertia-Gravity Wave Breaking in Three Dimensions. 1.Convectively Stable Waves, J. Atmos. Sci., 1998, vol. 55, pp. 2473–2488.MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Lindzen, R.S., Turbulence and Stress owing to Gravity Wave and Tidal Breakdown, J. Geophys. Res., 1981, vol. 86, no. C10, pp. 9707–9714.ADSCrossRefGoogle Scholar
  31. 31.
    Gavrilov, N.M., Pogorel’tsev, A.I., and Jacobi, C., Numerical Modeling of Effect of Latitude-Inhomogeneous Gravity Waves on the Circulation of the Middle Atmosphere, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2005, vol. 41, no. 1, pp. 14–24.Google Scholar
  32. 32.
    Squires, G.L., Practical Physics, University of Cambridge, 2001 (fourth edition). Translated under the title Prakticheskaya fizika, Moscow: Mir, 1971.Google Scholar
  33. 33.
    Hocke, K., Pavelyev, A., Yakovlev, O., et al., Radio Occultation Data Analysis by the Radioholographic Method, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, pp. 1169–1177.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. N. Gubenko
    • 1
  • A. G. Pavelyev
    • 1
  • R. R. Salimzyanov
    • 1
  • V. E. Andreev
    • 1
  1. 1.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations