Advertisement

Cosmic Research

, 49:319 | Cite as

Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield

  • T. SatoEmail author
  • K. Niita
  • V. A. Shurshakov
  • E. N. Yarmanova
  • I. V. Nikolaev
  • H. Iwase
  • L. Sihver
  • D. Mancusi
  • A. Endo
  • N. Matsuda
  • Y. Iwamoto
  • H. Nakashima
  • Y. Sakamoto
  • H. Yasuda
  • M. Takada
  • T. Nakamura
Article

Abstract

The dose reduction rates brought about by the installation of additional water shielding in a spacecraft are calculated in the paper using the particles and heavy ion transport code system PHITS, which can deal with transport of all kinds of hadrons and heavy ions with energies up to 100 GeV/n in three-dimensional phase spaces. In the PHITS simulation, an imaginary spacecraft was irradiated isotropically by cosmic rays with charges up to 28 and energies up to 100 GeV/n, and the dose reduction rates due to water shielding were evaluated for 5 types of doses: the dose equivalents obtained from the LET and linear energy spectra, the dose equivalents to skin and red bone marrow, and the effective dose equivalent. The results of the simulation indicate that the dose reduction rates differ according to the type of dose evaluated. For example, 5 g/cm2 water shielding reduces the effective dose equivalent and the LET dose equivalent by approximately 14% and 32%, respectively. Such degrees of dose reduction can be regarded to make water shielding worth the efforts required to install it.

Keywords

Dose Rate Cosmic Research Linear Energy Transfer Effective Dose Equivalent Equivalent Dose Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wilson, J.W., Chun, S.Y., Badavi, F.F., et al., HZETRN: A Heavy Ion/Nucleon Transport Code for Space Radiations, NASA TP-3146: NASA Langley Research Center, 1991.Google Scholar
  2. 2.
    Sato, T., Niita, K., Iwase, H., et al., Applicability of Particle and Heavy Ion Transport Code PHITS to the Shielding Design of Spacecrafts, Radiat. Meas., 2006, vol. 41, pp. 1142–1146.CrossRefGoogle Scholar
  3. 3.
    Iwase, H., Niita, K., and Nakamura, T., Development of a General-Purpose Particle and Heavy Ion Transport Monte Carlo Code, J. Nuc. Sci. Technol., 2002, vol. 39, no. 11, pp. 1142–1151.CrossRefGoogle Scholar
  4. 4.
    Niita, K., Sato, T., Iwase, H., et al., Particle and Heavy Ion Transport Code System: PHITS, Radiat. Meas., 2006, vol. 41, nos. 9–10, pp. 1080–1090.CrossRefGoogle Scholar
  5. 5.
    Niita, K., Chiba, S., Maruyama, T., et al., Analysis of the (N,XN’) Reactions by Quantum Molecular Dynamics Plus Statistical Decay Model, Phys. Rev., 1995, vol. C52, pp. 2620–2635.ADSGoogle Scholar
  6. 6.
    Sato, T., Sihver, L., Iwase, H., et al., Simulations of an Accelerator-Based Shielding Experiment Using the Particle and Heavy-Ion Transport Code System PHITS, Adv. Space Res., 2005, vol. 35, no. 2, pp. 208–213.ADSCrossRefGoogle Scholar
  7. 7.
    Recommendations of the ICRP Publication 60. Annals of the ICRP, vol. 21, nos. 1–3, New York: Pergamon, 1991.Google Scholar
  8. 8.
    Doke, T., Hayashi, T., Kikuchi, J., et al., Measurements of LET-Distribution, Dose Equivalent and Quality Factor with the RRMD-III on the Space Shuttle Missions STS-84, -89 and -91, Radiat. Meas., 2001, vol. 33, pp. 373–387.CrossRefGoogle Scholar
  9. 9.
    Badhwar, G.D., Atwell, W., Badavi, F.F., et al., Space Radiation Absorbed Dose Distribution in a Human Phantom, Radiat. Res., 2002, vol. 157, pp. 76–91.CrossRefGoogle Scholar
  10. 10.
    Yasuda, H., Badhwar, G.D., Komiyama, T., and Fujitaka, K., Effective Dose Equivalent on the Ninth Shuttle-Mir Mission (STS-91), Radiat. Res., 2000, vol. 154, pp. 705–713.CrossRefGoogle Scholar
  11. 11.
    Tylka, A.J. and Adams, Jr., J.H., Boberg, P.R., et al., CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code, IEEE Trans. Nucl. Sci., 1997, vol. 44, pp. 2150–2160.ADSCrossRefGoogle Scholar
  12. 12.
    Mitrikas, V.G., A Model of the Earth’s Radiation Belts for Estimating a Radiation Situation at the Orbit of the Mir Orbital Manned Station, Kosm. Issled., 1999, vol. 37, no. 5, pp. 548–552. [Cosmic Research, pp. 516–519].Google Scholar
  13. 13.
    Tomita, H., Kai, M., Kusama, T., and Ito, A., Monte Carlo Simulation of Physicochemical Processes of Liquid Water Radiolysis, Radiat. Environ. Biophys., 1997, vol. 36, pp. 105–116.CrossRefGoogle Scholar
  14. 14.
    Sato, T., Watanabe, R., and Niita, K., Development of a Calculation Method for Estimating Specific Energy Distribution in Complex Radiation Fields, Radiat. Prot. Dosim., 2006, vol. 122, nos. 1–4, pp. 41–45.Google Scholar
  15. 15.
    Nikjoo, H., Khvostunov, I.K., and Cucinotta, F.A., The Response of Tissue-Equivalent Proportional Counters to Heavy Ions, Radiat. Res., 2002, vol. 157, pp. 435–445.CrossRefGoogle Scholar
  16. 16.
    Guetersloh, S.B., Borak, T.B., Taddei, P.J., et al., The Response of a Spherical Tissue-Equivalent Proportional Counter to Different Ions Having Similar Linear Energy Transfer, Radiat. Res., 2004, vol. 161, pp. 64–71.CrossRefGoogle Scholar
  17. 17.
    Sato, T., Tsuda, S., Sakamoto, Y., et al., Analysis of Dose-LET Distribution in the Human Body Irradiated by High Energy Hadrons, Radiat. Prot. Dosim., 2003, vol. 106, pp. 145–153.CrossRefGoogle Scholar
  18. 18.
    Sato, T., Tsuda, S., Sakamoto, Y., et al., Conversion Coefficients from Fluence to Effective Dose for Heavy Ions with Energies up to 3 GeV/A, Radiat. Prot. Dosim., 2003, vol. 106, pp. 137–144.CrossRefGoogle Scholar
  19. 19.
    Badhwar, G.D. and Cucinotta, F.A., A Comparison of Depth Dependence of Dose and Linear Energy Transfer Spectra in Aluminum and Polyethylene, Radiat. Res., 2000, vol. 153, pp. 1–8.CrossRefGoogle Scholar
  20. 20.
    Badhwar, G.D. and Cucinotta, F.A., Depth Dependence of Absorbed Dose, Dose Equivalent and Linear Energy Transfer Spectra of Galactic and Trapped Particles in Polyethylene and Comparison with Calculations of Models, Radiat. Res., 1998, vol. 149, pp. 209–218.CrossRefGoogle Scholar
  21. 21.
    Shurshakov, V.A., Petrov, V.M., Ivanov, Yu.V., et al., Solar Particle Events Observed on Mir Station, Radiat. Meas., 1999, vol. 30, pp. 317–325.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. Sato
    • 1
    Email author
  • K. Niita
    • 2
  • V. A. Shurshakov
    • 3
  • E. N. Yarmanova
    • 3
  • I. V. Nikolaev
    • 4
  • H. Iwase
    • 5
  • L. Sihver
    • 6
  • D. Mancusi
    • 6
  • A. Endo
    • 1
  • N. Matsuda
    • 1
  • Y. Iwamoto
    • 1
  • H. Nakashima
    • 1
  • Y. Sakamoto
    • 1
  • H. Yasuda
    • 7
  • M. Takada
    • 7
  • T. Nakamura
    • 7
  1. 1.Japan Atomic Energy Agency (JAEA)TokaiJapan
  2. 2.Research Organization for Information Science and TechnologyTokaiJapan
  3. 3.State Research Center — Institute for Biomedical ProblemsMoscowRussia
  4. 4.S.P. Korolev Rocket Space CorporationMoscow oblastRussia
  5. 5.GSIDarmstadtGermany
  6. 6.Chalmers University of TechnologyGothenburgSweden
  7. 7.National Institute of Radiological Sciences (NIRS)ChibaJapan

Personalised recommendations