Cosmic Research

, Volume 47, Issue 6, pp 466–479 | Cite as

Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes

  • O. M. Belotserkovskii
  • I. V. Mingalev
  • V. S. Mingalev
  • O. V. Mingalev
  • A. M. Oparin
  • V. M. Chechetkin
Article

Abstract

The paper is devoted to studying the mechanisms of formation of cyclones in the Earth’s atmosphere with the help of numerical modeling using the complete system of gas-dynamic equations. The results of modeling have shown that cyclones can appear in horizontal stratified shear flows of warm and wet air masses with horizontal direction of gradients of the wind velocity components as a result of small disturbances of pressure which can be produced by Rossby waves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moiseev, S.S., Rutkevich, P.B., Tur, A.V., and Yanovskii, V.V., Vortex Dynamo in Convective Medium with Spiral Turbulence, Zh. Eksp. Teor. Fiz., 1988, vol. 94, no. 2, pp. 144–153.ADSGoogle Scholar
  2. 2.
    Lupyan, E.A., Mazurov, A.A., Rutkevich, P.B., and Tur, A.V., Generation of Large-Scale Vortices under the Action of Spiral Turbulence of Convective Nature, Zh. Eksp. Teor. Fiz., 1992, no. 5(11), pp. 1540–1552ADSGoogle Scholar
  3. 3.
    Lupyan, E.A., Mazurov, A.A., Rutkevich, P.B., and Tur, A.V., Scenarios of Development of Large-Scale Vortices in the Atmosphere, Dokl. Akad. Nauk, 1993, vol. 329, no. 6, pp. 720–722.Google Scholar
  4. 4.
    Rutkevich, P.B. and Moiseev, S.S., Evolution and Steady State of a Large-Scale Vortex Structure, Zh. Eksp. Teor. Fiz., 1996, vol. 109, no. 5, pp. 1634–1644.Google Scholar
  5. 5.
    Rutkevich, P.B., Equation of Vortex Instability Caused by Convective Turbulence and Coriolis Force, Zh. Eksp. Teor. Fiz., 1993, vol. 104, no. 6(12), pp. 4010–4020.Google Scholar
  6. 6.
    Challa, M. and Pfeffer, R., Formation of Atlantic Hurricanes from Cloud Clusters and Depressions, J. Atmos. Sci., 1990, vol. 47, p. 909.CrossRefADSGoogle Scholar
  7. 7.
    Montgomery, M. and Farrell, B., Tropical Cyclone Formation, J. Atmos. Sci., 1993, vol. 50, p. 285.CrossRefADSGoogle Scholar
  8. 8.
    Sharkov, E.A., Physical Mechanism of Genesis of Vortex Perturbations in Compressible Atmosphere Saturated with Water Vapor, Preprint of Space Research Institute, Russ. Acad. Sci.,, Moscow, 2004, no. 2102.Google Scholar
  9. 9.
    Rotunno, R. and Emanuel, K.A., An Air-Sea Interaction Theory for Tropical Cyclones. Part II, J. Atmos. Sci., 1987, vol. 44, pp. 542–561.CrossRefADSGoogle Scholar
  10. 10.
    Emanuel, K.A., Genesis and Maintenance of “Mediterranean Hurricanes”, Advances in Geosciences, 2005, vol. 2, pp. 217–220.ADSCrossRefGoogle Scholar
  11. 11.
    Belotserkovskii, O.M., Mingalev, V.S., Mingalev, O.V., and Oparin, A.M., On a Mechanism of Origination of a Large-Scale Vortex in the Troposphere over Irregularly Heated Surface, Dokl. Akad. Nauk, 2006, vol. 410, no. 6, pp. 816–820.MATHGoogle Scholar
  12. 12.
    Obukhov, A.M., Turbulentnost’ i dinamika atmosfery (Turbulence and Atmospheric Dynamics), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  13. 13.
    Mingalev, I.V. and Mingalev, V.S., A Model of General Circulation of the Earth’s Lower and Middle Atmosphere at a Specified Temperature Distribution, Mat. Model., 2005, vol. 17, no. 5, pp. 24–40.MATHGoogle Scholar
  14. 14.
    Trotsenko, A.N. and Fomin, B.A., Calculation of Characteristics of Thermal Radiation Transport Based on the Direct Integration Method, Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana, 1989, vol. 25, no. 1, pp. 106–109.ADSGoogle Scholar
  15. 15.
    Belotserkovskii, O.M., Andrushchenko, V.A., and Shevelev, Yu.D., Dinamika prostranstvennykh vikhrevykh techenii v neodnorodnoi atmosfere. Vychislitel’nyi eksperiment (Dynamics of Spatial Eddy Flows in the Inhomogeneous Atmosphere: A Numerical Experiment), Moscow: Yanus-K, 2000.Google Scholar
  16. 16.
    Oparin, A.M., Numerical Modeling of the Problems Associated with Intense Development of Hydrodynamic Instabilities, in Novoe v chislennom modelirovanii: algoritmy, vychislitel’nyi eksperiment, rezul’taty (New Issues in Numerical Simulations: Algorithms, Computing Experiment, and Results), Moscow: Nauka, 2000.Google Scholar
  17. 17.
    Belotserkovskii, O.M., Kraginskii, L.M., and Oparin, A.M., Numerical Simulation of Three-Dimensional Flows in Stratified Atmosphere Caused by Strong Large-Scale Disturbances, Zh. Vychisl. Mat. i Mat. Fiz., 2003, vol. 43,issue 11, pp. 1744–1758.MathSciNetGoogle Scholar
  18. 18.
    Belotserkovskii, O.M., Gushchin, V.A., and Kon’shin, V.N., Splitting Method for Studying the Flows of Stratified Liquid with a Free Surface, Zh. Vychisl. Mat. i Mat. Fiz., 1987, vol. 27, p. 594.MathSciNetGoogle Scholar
  19. 19.
    Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues, J. Geophys. Res., 2002, vol. 107, no. A12, pp. 1468–1483.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. M. Belotserkovskii
    • 1
  • I. V. Mingalev
    • 2
  • V. S. Mingalev
    • 2
  • O. V. Mingalev
    • 2
  • A. M. Oparin
    • 1
  • V. M. Chechetkin
    • 3
  1. 1.Institute of Design AutomationRussian Academy of SciencesMoscowRussia
  2. 2.Polar Geophysical InstituteKola Science Center of Russian Academy of SciencesApatityRussia
  3. 3.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations