Advertisement

Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 295–299 | Cite as

Convective Combustion of a Ti + 0.5C Granulated Mixture. Domain of Existence and Fundamental Phenomena

  • B. S. SeplyarskiiEmail author
  • R. A. Kochetkov
  • T. G. Lisina
Article
  • 19 Downloads

Abstract

Combustion of a Ti + 0.5C granulated mixture with a varying rate of the coflow of nitrogen is under consideration. Experimental data are used to determine the gas flow parameters responsible for the transition from conductive to convective propagation of the combustion wave, which is characterized by a stronger dependence of the burning rate on the value of the gas flow. A simple model for calculating the burning rate in convective combustion, and a method for determining the boundary between combustion regimes is developed. In accordance with this model, the burning rate not only depends on the combustion temperature of the mixture, but also on the ignition temperature of the mixture components in the flow of active gas

Keywords

combustion granulation Ti + 0.5C mixture gas flow convective heat transfer combustion mechanism transition between combustion regimes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Com-bustion (Torus Press, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    B. S. Seplyarskii, A. G. Tarasov, and R. A. Kochetkov, “Experimental Investigation of Combustion of a Gasless Pelletized Mixture of Ti + 0.5C in Argon and Nitro-gen Coflows,” Fiz. Goreniya Vzryva 49 (5), 55–63 (2013)Google Scholar
  3. 2a.
    B. S. Seplyarskii, A. G. Tarasov, and R. A. Kochetkov, “Experimental Investigation of Combustion of a Gasless Pelletized Mixture of Ti + 0.5C in Argon and Nitro-gen Coflows,” [Combust., Expl., Shock Waves 49 (5), 555–562 (2013)].CrossRefGoogle Scholar
  4. 3.
    B. S. Seplyarskii and R. A. Kochetkov, “Combustion of Powder and Pelletized Ti + xC (x > 0.5) Compositions in a Gas Coflow,” Khim. Fiz. 36 (9), 23–31 (2017); DOI:  https://doi.org/10.7868/S0207401X17090126.Google Scholar
  5. 4.
    A. P. Aldushin and A. G. Merzhanov, Heat Wave Propagation in Heterogeneous Media (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  6. 5.
    A. P. Aldushin “Heat Transfer and Convection Combustion Regimes of Porous Systems with Filtration of Heat Carrier,” Fiz. Goreniya Vzryva 26 (2), 60–68 (1990)Google Scholar
  7. 5a.
    A. P. Aldushin “Heat Transfer and Convection Combustion Regimes of Porous Systems with Filtration of Heat Carrier,” [Combust., Expl., Shock Waves 26 (2), 180–187 (1990)].CrossRefGoogle Scholar
  8. 6.
    A. V. Lykov, Theory of Thermal Conductivity (Vysshaya Shkola, Moscow, 1967) [in Russian].Google Scholar
  9. 7.
    M. A. Gol’dshtik, Transfer Processes in a Granular Layer (Kutateladze Inst. of Thermal Phys., Sib. Branch, Russian Acad. of Sci., Novosibirsk, 1984) [in Russian].Google Scholar
  10. 8.
    Yu. Sh. Matros, Unsteady Processes in Catalytic Reactors (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  11. 9.
    F. Kreith and W. Z. Black, Basic Heat Transfer (Harper and Row, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. S. Seplyarskii
    • 1
    Email author
  • R. A. Kochetkov
    • 1
  • T. G. Lisina
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations