Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 282–288 | Cite as

Effects of Obstacles on the Passage of Filtering Combustion Waves along a Porous Titanium Tape

  • S. G. VadchenkoEmail author


This paper describes the combustion of tapes in air, rolled from titanium powder, and the delay time of the combustion front motion in the presence of a one-sided obstacle, which limits the access of an oxidizer to the surface. It is shown that the combustion front is aligned with respect to the tape thickness at a long distance from the obstacle, which is two orders of magnitude larger than its thickness. The critical width of the two-sided obstacle is determined. The largest portion of the tape, where the front is aligned with respect to the tape thickness with the one-sided obstacle, and the small critical width of the two-sided obstacle are due to the surface combustion.


filtering and surface combustion burning rate of titanium tapes obstacle effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Vadchenko, A. S. Rogachev, O. D. Boyarchenko, and Yu. A. Kulagin, “Method for Obtaining a Multilayer Tape for a Fuel Cell,” RF Patent No. 2 499 907 C1,” Registered and published November 27, 2013 (State Register of Inventions of the Russian Federation, 2013); Bul. No. 33.Google Scholar
  2. 2.
    P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].Google Scholar
  3. 3.
    S. G. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “Solid Flame Combustion of Thin Films,” Dokl. Akad. Nauk 408 (1), 211–213 (2006).Google Scholar
  4. 4.
    N. N. Bakhman, G. P. Kuznetsov, and V. M. Puchkov, “Critical Conditions of the Combustion of Compressed Titanium Specimen,” Fiz. Goreniya Vzryva 34 (3), 50–55 (1998) [Combust., Expl., Shock Waves 34 (3), 292–297 (1998)].Google Scholar
  5. 5.
    B. G. Efimov and P. N. Kuzyaev, “Some Characteristics of the Combustion of Metals in an N2 + O2 Flow,” Fiz. Goreniya Vzryva 30 (6), 68–71 (1994) [Combust., Expl., Shock Waves 30 (6), 292–297 (1994)].Google Scholar
  6. 6.
    V. I. Bolobov, “Mechanism of Self-Ignition of Titanium Alloys in Oxygen,” Fiz. Goreniya Vzryva 38 (6), 37–45 (2002) [Combust., Expl., Shock Waves 38 (6), 639–645 (2002)].Google Scholar
  7. 7.
    V. I. Bolobov, “Ignition of Titanium During Fracture in Oxygen,” Fiz. Goreniya Vzryva 53 (2), 47–53 (2017) [Combust., Expl., Shock Waves 53 (2), 165–170 (2017)]; 10.15372/FGV20170206.Google Scholar
  8. 8.
    V. I. Bolobov, “Effect of Heat Transfer Conditions on the Critical Pressure of Metal Ignition in Oxygen,” Fiz. Goreniya Vzryva 52 (2), 54–59 (2016) [Combust., Expl., Shock Waves 52 (2), 172–176 (2016)]; 10.15372/FGV20160206.Google Scholar
  9. 9.
    E. V. Chernenko and A. L. Pivtsov, “Combustion Propagation of a Titanium Powder Surface,” Fiz. Goreniya Vzryva 26 (6), 68–74 (1990) [Combust., Expl., Shock Waves 26 (6), 684–689 (1990)].Google Scholar
  10. 10.
    P. M. Krishenik and S. V. Kostin, “Cellular and Heterogeneous Filtration Combustion Modes of Titanium in the Gravitational Force Field,” Fiz. Goreniya Vzryva 52 (3), 23–31 (2016) [Combust., Expl., Shock Waves 52 (3), 273–280 (2016)]; 10.15372/FGV20160303.Google Scholar
  11. 11.
    V. S. Berman, S. S. Novikov, and Yu. S. Ryazantsev, “Passage of a Combustion Wave Propagating on a Condensed Substance through an Inert Target,” Dokl. Akad. Nauk SSSR 211 (5), 1153–1155 (1973).Google Scholar
  12. 12.
    V. F. Proskudin, V. A. Golubev, P. G. Berezhko, et al., “Combustion-Wave Propagation Through an Inert Obstacle in Real Condensed Systems,” Fiz. Goreniya Vzryva 34 (6), 43–47 (1998) [Combust., Expl., Shock Waves 34 (6), 639–643 (1998)].Google Scholar
  13. 13.
    I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases Titanium Combustion in Air,” Combust. Flame 112 (4), 522–533 (1998).CrossRefGoogle Scholar
  14. 14.
    I. O. Khomenko, A. S. Mukas’yan, V. I. Ponomarev, et al., “Phase Formation Dynamics in Combustion of Metal-Gas Systems,” Dokl. Akad. Nauk SSSR 326 (4), 673–677 (1992).Google Scholar
  15. 15.
    A. P. Brovko and I. N. Bekman, “Study of Solid-Phase Transformations in Surface Layers of Titanium,” Izv. Akad. Nauk SSSR, Ser. Metally, No. 1, 95–98 (1982).Google Scholar
  16. 16.
    S. V. Kostin, P. M. Krishenik, and K. G. Shkadinskii, “Experimental Study of the Heterogeneous Filtration Combustion Mode,” Fiz. Goreniya Vzryva 50 (1), 49–58 (2014) [Combust., Expl., Shock Waves 50 (1), 42–50 (2014)].Google Scholar
  17. 17.
    A. S. Rogachev, F. Baras, and S. A. Rogachev, “Modes of Gasless Combustion and Macrostructure of Combustion Front (for the Ti-Si System As an Example),” Fiz. Goreniya Vzryva 45 (4), 147–155 (2009) [Combust., Expl., Shock Waves 45 (4), 478–485 (2009)].Google Scholar
  18. 18.
    Combustion Synthesis Chemistry, Ed. by M. Koidzumi (Mir, Moscow, 1998) [Russian translation].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations