Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 704–711 | Cite as

The Use of the [H2O–CO2] Arbitrary Decomposition Assumption to Predict the Performance of Condensed High Explosives

Article
  • 9 Downloads

Abstract

The plate dent test is one of the simplest tools for fast determination of the detonation pressure. The test is based on the observation that the detonation pressure correlates with the depth of the dent produced by a detonating explosive on a metal witness plate. The present study is aimed at developing a model for estimating the dent depth, which is used not only to obtain the detonation pressure, but also to evaluate the brisance relative to a reference explosive. It is shown that the experimental dent depth values for CHNO and CHNOClF explosives can be successfully reproduced by a model based on few parameters, namely: loading density, number of moles of gaseous detonation products per gram of the explosive, and average molecular weight of the gaseous products, where the number of moles and the mean molecular weight of the gaseous products are calculated according to the [H2O–CO2] arbitrary decomposition assumption. Furthermore, the predicted values of the dent depth and the Kamlet–Jacobs method are used to estimate the detonation pressure for 37 explosives. The results show that the pressures obtained on the basis of the dent depth values are in better agreement with experimental/thermochemical code data than the predictions of the Kamlet–Jacobs method.

Keywords

brisance detonation pressure dent depth Kamlet–Jacobs method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Nielsen, “Caged Polynitramine Compound,” US Patent No. 5 693 794 (1988).Google Scholar
  2. 2.
    M.-X. Zhang, P. E. Eaton, and R. Gilardi, “Heptaand Octanitrocubanes,” Angew. Chem., Int. Ed. 39 (2), 401–404 (2000).Google Scholar
  3. 3.
    J. Geith, T. M. Klapötke, J. Weigand, and G. Holl, “Calculation of the Detonation Velocities and Detonation Pressures of Dinitrobiuret (DNB) and Diaminotetrazolium Nitrate (HDAT-NO3),” Propel., Explos., Pyrotech. 29 (1), 3–8 (2004).Google Scholar
  4. 4.
    H. Gao and J. n. M. Shreeve, “Azole-Based Energetic Salts,” Chem. Rev. 111 (11), 7377–7436 (2011).Google Scholar
  5. 5.
    D. Fischer, T. M. Klapötke, and J. Stierstorfer, “Oxalylhydrazinium Nitrate and Dinitrate-Efficiency Meets Performance,” J. Energ. Mater. 32 (1), 37–49 (2014).ADSGoogle Scholar
  6. 6.
    T. M. Klapötke and T. G. Witkowski, “Covalent and Ionic Insensitive High-Explosives,” Propel., Explos., Pyrotech. 41 (3), 470–483 (2016).Google Scholar
  7. 7.
    T. M. Klapötke, M. Leroux, P. C. Schmid, and J. Stierstorfer, “Energetic Materials Based on 5,5'-Diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole,” Chem.-Asian J. 11 (6), 844–851 (2016).Google Scholar
  8. 8.
    M. Sućeska, Test Methods for Explosives (Springer-Verlag, New York, 1995).Google Scholar
  9. 9.
    L. C. Smith, “On Brisance, and a Plate-Denting Test for the Estimation of Detonation Pressure,” Report LADC-6267 (Los Alamos Scientific Laboratory, 1963).Google Scholar
  10. 10.
    C.L. Mader, Numerical Modeling of Explosives and Propellants (CRC Press, Boca Raton, 2008).Google Scholar
  11. 11.
    M. Suceska, “Calculation of Detonation Properties by EXPLO5 Computer Program,” Mater. Sci. Forum 465/466, 325–330 (2004).Google Scholar
  12. 12.
    L. E. Fried, W. M. Howard, and P. C. Souers, CHEETAH 2.0 User’s Manual, UCRL-MA-117541, Rev. 5 (Lawrence Livermore National Laboratory, 1998).Google Scholar
  13. 13.
    A. Smirnov, D. Lempert, T. Pivina, and D. Khakimov, “Basic Characteristics for Estimation Polynitrogen Compounds Efficiency,” Cent. Eur. J. Energ. Mater. 8 (4), 233–247 (2011).Google Scholar
  14. 14.
    J. R. Stine, “On Predicting Properties of Explosives-Detonation Velocity,” J. Energ. Mater. 8 (1/2), 41–73 (1990).Google Scholar
  15. 15.
    M. H. Keshavarz, A. Zamani, and M. Shafiee, “Predicting Detonation Performance of CHNOFCl and Aluminized Explosives,” Propel., Explos., Pyrotech. 39 (5), 749–754 (2014).Google Scholar
  16. 16.
    M. H. Keshavarz, M. Kamalvand, M. Jafari, and A. Zamani, “An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives,” Cent. Eur. J. Energ. Mater. 13 (2), 381–396 (2016).Google Scholar
  17. 17.
    M. J. Kamlet and S. J. Jacobs, “Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives,” J. Chem. Phys. 48 (1), 23–35 (1968).ADSGoogle Scholar
  18. 18.
    D. R. Hardesty and J. E. Kennedy, “Thermochemical Estimation of Explosive Energy Output,” Combust. Flame 28, 45–59 (1977).Google Scholar
  19. 19.
    M. J. Kamlet and M. Finger, “An Alternative Method for Calculating Gurney Velocities,” Combust. Flame 34, 213–214 (1979).Google Scholar
  20. 20.
    J. M. Short, F. H. Helm, M. Finger, and M. J. Kamlet, “The Chemistry of Detonations. VII. A Simplified Method for Predicting Explosive Performance in the Cylinder Test,” Combust. Flame 43, 99–109 (1981).Google Scholar
  21. 21.
    H. Hornberg and F. Volk, “The Cylinder Test in the Context of Physical Detonation Measurement Methods,” Propel., Explos., Pyrotech. 14 (5), 199–211 (1989).Google Scholar
  22. 22.
    T. R. Gibbs and P. Popolato, LASL Explosive Property Data, (Univ. of California Press, Berkeley, 1980).Google Scholar
  23. 23.
    D. Chavez, T. M. Klapötke, D. Parrish, et al., “The Synthesis and Energetic Properties of 3,4-bis(2,2,2-trinitroethylamino)furazan (BTNEDAF),” Propel., Explos., Pyrotech. 39 (5), 641–648 (2014).Google Scholar
  24. 24.
    M. Göbel and T. M. Klapötke, “Development and Testing of Energetic Materials: The Concept of High Densities Based on the Trinitroethyl Functionality,” Adv. Funct. Mater. 19 (3), 347–365 (2009).Google Scholar
  25. 25.
    A. Elbeih, J. Pachman, S. Zeman, et al., “Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders,” J. Energ. Mater. 30 (4), 358–371 (2012).ADSGoogle Scholar
  26. 26.
    J. M. Veauthier, D. E. Chavez, B. C. Tappan, and D. A. Parrish, “Synthesis and Characterization of Furazan Energetics ADAAF and DOATF,” J. Energ. Mater. 28 (3), 229–249 (2010).ADSGoogle Scholar
  27. 27.
    N. Fischer, D. Fischer, T. M. Klapötke, et al., “Pushing the Limits of Energetic Materials—the Synthesis and Characterization of Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate,” J. Mater. Chem. 22 (38), 20418–20422 (2012).Google Scholar
  28. 28.
    L. Liu, Y. Zhang, S. Zhang, and T. Fei, “Heterocyclic Energetic Salts of 4,4',5,5'-tetranitro-2,2'-biimidazole,” J. Energ. Mater. 33 (3), 202–214 (2015).ADSGoogle Scholar
  29. 29.
    A. A. Dippold, M. Feller, and T. M. Klapötke, “5,5'-Dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole—A Metal Free Primary Explosive Combining Excellent Thermal Stability and High Performance,” Cent. Eur. J. Energ. Mater. 8 (4), 261–278 (2011).Google Scholar
  30. 30.
    NIST Chemistry WebBook. NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899); http://webbook.nist.gov.
  31. 31.
    M. J. Kamlet and C. Dickinson, “Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman–Jouguet Detonation Pressures on the Basis of Available Experimental Information,” J. Chem. Phys. 48 (1), 43–50 (1968).ADSGoogle Scholar
  32. 32.
    B. M. Dobratz and P. C. Crawford, “LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants,” Report No. UCRL-52997-CHG. 2 (Lawrence Livermore National Laboratory, 1985).Google Scholar
  33. 33.
    M. H. Keshavarz “Theoretical Prediction of Detonation Pressure of CHNO High Energy Materials,” Indian J. Eng. Mater. Sci. 14 (1), 77–80 (2007).Google Scholar
  34. 34.
    M. Jafari and M. H. Keshavarz, “Simple Approach for Predicting the Heats of Formation of High Nitrogen Content Materials,” Fluid Phase Equilib. 415, 166–175 (2016).Google Scholar
  35. 35.
    B. M. Rice, S. V. Pai, and J. Hare, “Predicting Heats of Formation of Energetic Materials using Quantum Mechanical Calculations,” Combust. Flame 118 (3), 445–458 (1999).Google Scholar
  36. 36.
    D. Frem, “Predicting the Plate Dent Test Output in Order to Assess the Performance of Condensed High Explosives,” J. Energ. Mater. 35 (1), 20–28 (2017).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.FREM Co.BeirutLebanon

Personalised recommendations