Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 689–697 | Cite as

Ignition and Combustion of Condensed Systems with Energy Fillers

  • V. A. Arkhipov
  • A. S. Zhukov
  • V. T. Kuznetsov
  • N. N. Zolotorev
  • N. A. Osipova
  • K. G. Perfil’eva
Article
  • 1 Downloads

Abstract

This paper describes the results of an experimental study of ignition and combustion of condensed systems, containing energy fillers, i.e., powders of aluminum, boron, aluminum borides, and titanium. Compositions on a hydrocarbon or active fuel binder with a combined oxidizer (ammonium perchlorate and/or ammonium nitrate) are considered. Thermodynamic estimates for the ballistic characteristics of the compositions under study are given. It is shown that a unit pulse increases by 3.5% with the replacement of aluminum by boron in the compositions considered. It is experimentally determined that the time delay of ignition of boron-containing compositions decreases in conductive and radiant heat transfer and that the stationary burning rate of boron and aluminum boride containing compositions increases. The efficiency of the impact of energy fillers on the characteristics of condensed systems as a function of the composition of a combined oxidizer is determined.

Keywords

condensed system combined oxidizer ammonium perchlorate ammonium nitrate energy fillers aluminum boron aluminum boride titanium boride ignition delay time burning rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Aleksandrov and L. S. Yanovskii, Integral Ramjet Engines Based on Solid Fuel. Foundations of Theory and Calculations (Akademkniga, 2006) [in Russian].Google Scholar
  2. 2.
    M. K. King, “Ignition and Combustion of Boron Particles and Clouds,” J. Spacecraft Rocket 19 (4), 294–306 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    S. Xu, Yu. Chen, X. Chen, et al., “Combustion Heat of the Al/B Powder and Its Application in Metallized Explosives in Underwater Explosions,” Fiz. Goreniya Vzryva 52 (3), 97–104 (2016) [Combust., Expl., Shock Waves 52 (3), 342–349 (2016)].Google Scholar
  4. 4.
    W. Ao, J. H. Zhou, W. J. Yang, “Ignition, Combustion, and Oxidation of Mixtures of Amorphous and Crystalline Boron Powders,” Fiz. Goreniya Vzryva 50 (6), 47–53 (2014) [Combust., Expl., Shock Waves 50 (6), 664–669 (2014)].Google Scholar
  5. 5.
    S. G. Fedorov, Sh. L. Guseinov, and P. A. Storozhenko, “Nanosized Boron and Aluminum Boride Powders as Potential Components of High-Energy Composite Materials,” in Fundamental and Applied Problems of Engineering Chemistry (Novosibirsk, Nauka, 2011) [in Russian].Google Scholar
  6. 6.
    D. A. Yagodnikov, A. V. Voronetskii, V. I. Sarab’ev, “Ignition and Combustion of Pyrotechnic Compositions Based on Micro-and Nanoparticles of Aluminum Diboride in Air Flow in a Two-Zone Combustion Chamber,” Fiz. Goreniya Vzryva 52 (3), 51–58 (2016) [Combust., Expl., Shock Waves 52 (3), 300–306 (2016)].Google Scholar
  7. 7.
    L. D. Romodanova and P. F. Pokhil “Effect of Adding Metals and Their Borides on Burning Rate of Composite Systems,” Fiz. Goreniya Vzryva 9 (2), 230–235 (1973) [Combust., Expl., Shock Waves 9 (2), 195–198 (1973)].Google Scholar
  8. 8.
    D. B. Lempert, G. N. Nechiporenko, G. P. Dolganova, and S. K. Sylasnova, “Energy Possibilities of Composite Solid Propellants with Hydrazine and Hydroxylamine Perchlorate as Oxidizers,” in Chemical Physics of Combustion and Explosion: XII Symp., Chernogolovka, 2000, Vol.1.Google Scholar
  9. 9.
    D. B. Lempert, G. N. Nechiporenko, G. P. Dolganova, and L. N. Stesik “Dependence of the SpecificMomentum of Optimized Compounds of a Mixed Solid Propellant (Binder + Metal + Oxidizer) on the Nature of Metal and Oxidizer,” Khim. Fiz. 17 (7), 114–120 (1998).Google Scholar
  10. 10.
    Chemical Encyclopedic Dictionary, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1983) [in Russian].Google Scholar
  11. 11.
    J. G. Speight et al., Lange’s Handbook of Chemistry (McGraw-Hill, New York, 2005).Google Scholar
  12. 12.
    A. B. Vorozhtsov, A. S. Zhukov, M. Kh. Ziatdinov, et al., “Novel Micro-and Nanofuels: Production, Characterization, and Applications for High-Energy Materials,” in Chemical Rocket Propulsion (Springer, 2017).Google Scholar
  13. 13.
    V. F. Komarov, N. I. Popok, and G. V. Sakovich, “Principles of Organization and Implementation of an Explosion of Composite Explosive Materials,” in Fundamental and Applied Problems of Engineering Chemistry (Novosibirsk, Nauka, 2011) [in Russian].Google Scholar
  14. 14.
    B. G. Trusov, “TERRA Software for Simulating the Phase and Chemical Equilibria at High Temperatures,” in Combustion and Plasma Chemistry, III Int. Symp., Alma-Ata, Kazakhstan, August 24–26, 2005.Google Scholar
  15. 15.
    S. Sarner, Propellant Chemistry (Reinhold, New York, 1966).Google Scholar
  16. 16.
    D. Mirkovic, J. Grobner, et al., “Experimental Study and Thermodynamic Re-Assessment of the Al–B System,” J. Alloys Comp. 384 (1), 168–174 (2004).CrossRefGoogle Scholar
  17. 17.
    H. L. Schick, Thermodynamics of Certain Refractory Compounds, Vol. 1 (Academic Press, New York, 1966).Google Scholar
  18. 18.
    A. D. Rusin and V. M. Tatevskii, “The Nature of Green Illumination and the Composition of Combustion Products of Boron at a Temperature of 3300 K,” Dokl. Akad. Nauk SSSR 7 (139) (3), 630–633 (1961).Google Scholar
  19. 19.
    W. J. Miller, Boron Combustion Product Chemistry (AeroChem Research Labs Inc., Princeton, 1976).Google Scholar
  20. 20.
    Ya. I. Vovchuk, A. N. Zolotko, L. A. Klyachko, and D. I. Polushchuk, “High-Temperature Combustion of an Immobile Boron Particle in an Oxygen-Bearing Medium,” Fiz. Goreniya Vzryva 11 (4), 556–563 (1975) [Combust., Expl., Shock Waves 11 (4), 471–476 (1975)].Google Scholar
  21. 21.
    V. N. Vilyunov, Theory of Ignition of Condensed Materials (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  22. 22.
    A. G. Merzhanov and A. E. Averson, “The Present State of the Thermal Ignition Theory: An Invited Review,” Combust. Flame 16 (1), 89–124 (1971).CrossRefGoogle Scholar
  23. 23.
    A. Jain, K. Joseph, S. Anthonysamy, and G. S. Gupta, “Kinetics of Oxidation of Boron Powder,” Thermochim. Acta 514 (1), 67–73 (2011).CrossRefGoogle Scholar
  24. 24.
    V. A. Arkhipov, S. S. Bondarchuk, A. G. Korotkikh, et al., “Influence of Aluminum Particle Size on Ignition and Nonstationary Combustion of Heterogeneous Condensed Systems,” Fiz. Goreniya Vzryva 48 (5), 148–159 (2012) [Combust., Expl., Shock Waves 48 (5), 625–635 (2012)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Arkhipov
    • 1
  • A. S. Zhukov
    • 1
  • V. T. Kuznetsov
    • 1
  • N. N. Zolotorev
    • 1
  • N. A. Osipova
    • 1
  • K. G. Perfil’eva
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations