Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 681–688 | Cite as

Influence of the Strain Rate, Particle Size, and Equivalence Ratio on the Combustion of the Premixed Air–Aluminum Microparticle Mixture with a Counterflow Structure

  • Ya. Pourmohammad
  • M. Sabzpooshani
Article
  • 6 Downloads

Abstract

The effects of the strain rate, equivalence ratio, and particle diameter on the combustion of a mixture of aluminum microparticles with air under fuel-lean conditions are studied in the counterflow configuration with an approximate analytical perturbation method. The flame structure is assumed to consist of three zones: preheating, flame, and post-flame zones. Reasonable agreement between the current results and experimental data is obtained in terms of the flame temperature. The dimensionless ignition and ultimate flame temperatures, place of the flame starting point, and flame thickness are obtained as functions of the strain rate for different particle diameters and equivalent ratios. The results indicate that the ignition and ultimate flame temperatures and also the flame thickness decrease with increasing strain rate. With a decrease in the strain rate, the length of the preheating zone increases. With increasing particle diameter, the flame thickness increases, whereas the ignition and ultimate flame temperatures decrease. An increase in the equivalence ratio causes an increase in the ultimate flame temperature and reduction of the preheating zone and flame thickness.

Keywords

metal particles aluminum microparticles counterflow combustion strain rate premixed mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Brooks and M. W. Beckstead, “Dynamics of Aluminum Combustion,” J. Propul. Power 11, 769–780 (1995).CrossRefGoogle Scholar
  2. 2.
    M. K. King, “Aluminum Combustion in a Solid Rocket Motor Environment,” Proc. Combust. Inst. 32, 2107–2114 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. Feng, Z. Xia, L. Huang, and X. Yan, “Experimental Investigation on the Combustion Characteristics of Aluminum in Air,” Acta Astronaut. 129, 1–7 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    J. F. Guery, I. S. Chang, et al., “Solid Propulsion for Space Applications: An Updated Roadmap,” Acta Astronaut 66, 201–219 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    E. L. Dreizin, “Experimental Study of Stages in Aluminium Particle Combustion in Air,” Combust. Flame 105, 541–556 (1996).CrossRefGoogle Scholar
  6. 6.
    J. Sun, R. Dobashi, and T. Hirano, “Structure of Flames Propagating through Aluminum Particles Cloud and Combustion Process of Particles,” J. Loss Prevent. Process Ind. 19, 769–773 (2006).CrossRefGoogle Scholar
  7. 7.
    Z. Chen and B. Fan, “Flame Propagation Through Aluminum Particle Cloud in a Combustion Tube,” J. Loss Prevent. Process Ind. 18, 13–19 (2005).CrossRefGoogle Scholar
  8. 8.
    A. P. Il’in, A. A. Gromov, V. I. Vereshchagin, et al., “Combustion of Ultrafine Aluminum in Air,” Fiz. Goreniya Vzryva 37 (6), 56–60 (2001) [Combust., Expl., Shock Waves 37 (6), 664–668 (2001)].Google Scholar
  9. 9.
    G. Joulin, “Asymptotic Analysis of Non-Adiabatic Flames, Heat Losses Towards Small Inert Particles,” Proc. Combust. Inst. 18, 1395–1404 (1981).CrossRefGoogle Scholar
  10. 10.
    Y. S. Kwon, A. A. Gromov, A. P. Il’in, et al., “The Mechanism of Combustion of Superfine Aluminum Powders,” Combust. Flame 133, 385–391 (2003).CrossRefGoogle Scholar
  11. 11.
    E. L. Dreizin, “On the Mechanism of Asymmetric Aluminum Particle Combustion,” Combust. Flame 117, 841–850 (1999).CrossRefGoogle Scholar
  12. 12.
    M. W. Beckstead, “Correlating Aluminum Burning Times,” Fiz. Goreniya Vzryva 41 (5), 55–69 (2005) [Combust., Expl., Shock Waves 41 (5), 533–546 (2005)].Google Scholar
  13. 13.
    E. L. Dreizin, “Experimental Study of Aluminum Particle Flame Evolution in Normal and Micro-Gravity,” Combust. Flame 116, 323–333 (1999).CrossRefGoogle Scholar
  14. 14.
    P. Julien, J. Vickery, S. Whiteley, et al., “Effect of Scale on Freely Propagating Flames in Aluminum Dust Clouds,” J. Loss Prevent. Process Ind. 36, 230–236 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Goroshin, M. Bidabadi, and J. H. S. Lee, “Quenching Distance of Laminar Flame in Aluminum Dust Clouds,” Combust. Flame 105, 147–160 (1996).CrossRefGoogle Scholar
  16. 16.
    S. Goroshin, M. Kolbe, and J. H. S Lee, “Flame Speed in a Binary Suspension of Solid Fuel,” Proc. Combust. Inst. 28 (2), 2811–2817 (2000).CrossRefGoogle Scholar
  17. 17.
    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air,” Combust. Flame 156, 5–13 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Combustion of Bimodal Nano/Micron-Sized Aluminum Particle Dust in Air,” Proc. Combust. Inst. 31, 2001–2009 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Daou, “Strained Premixed Flames: Effect of Heat-Loss, Preferential Diffusion and Reversibility of the Reaction,” Combust. Theory Model. 15, 437–454 (2011).ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    R. W. Thatcher and E. AlSarairah, “Steady and Unsteady Flame Propagation in a Premixed Counterflow,” Combust. Theory Model. 11, 569–583 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Y. Wang, W. H. Chen, and C. K. Law, “Extinction of Counterflow Diffusion Flames with Radiative Heat Loss and Nonunity Lewis Numbers,” Combust. Flame 148, 100–116 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Camacho, A. V. Singh, W. Wang, et al., “Soot Particle Size Distributions in Premixed Stretch-Stabilized Flat Ethylene–Oxygen–Argon Flames,” Proc. Combust. Inst. 36 (1), 1001–1009 (2017).CrossRefGoogle Scholar
  23. 23.
    F. El-Mahallaway and S. El-Din Habik, Fundamentals and Technology of Combustion (Elsevier, 2002).Google Scholar
  24. 24.
    R. H. Rand and D. Armbruster, Perturbation Methods, Bifurcation Theory and Computer Algebra (Springer, 1987).CrossRefzbMATHGoogle Scholar
  25. 25.
    A. H. Nayfeh, Introduction to Perturbation Techniques (John Wiley and Sons, 1993).zbMATHGoogle Scholar
  26. 26.
    C. Badiola, R. J. Gill, and E. L. Dreizin, “Combustion Characteristics of Micron-Sized Aluminum Particles in Oxygenated Environments,” Combust. Flame 158, 2064–2070 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.University of KashanKashanIran

Personalised recommendations