Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 664–672 | Cite as

Physicomathematical Modeling of Ignition of a Heterogeneous Mixture of Methane, Hydrogen, and Coal Microparticles

  • D. A. Tropin
  • A. V. Fedorov
Article
  • 1 Downloads

Abstract

A physicomathematical model is developed for ignition and combustion of a methane–air mixture containing coal microparticles. The model takes into account the detailed kinetics of oxidation of the gaseous methane–hydrogen–air mixture and the processes of thermal destruction of coal particles with release of volatiles (methane and hydrogen) to the gas phase, ignition and combustion of these volatiles in the gas phase, and heterogeneous reaction of carbon oxidation. It is demonstrated that addition of coal particles to the methane–air mixture in the temperature interval from 900 to 1450 K reduces the ignition delay time. Moreover, addition of coal particles to the methane–air mixture leads to shifting of the ignition limit of the gas mixture toward lower temperatures. The calculated delay time of coal ignition in the air–coal mixture and the predicted delay times of methane and coal ignition in the methane–air–coal mixture are found to be in reasonable agreement with experimental data obtained in a rapid compression machine.

Keywords

ignition methane–hydrogen–air mixture coal microparticles detailed chemical kinetics mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Babii and Yu. F. Kuvaev, Combustion of Coal Dust and Calculation of the Coal Dust Flame (Energoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  2. 2.
    W. Rybak, J. Želkowski, and S. Remke, “Experimental and Theoretical Studies of Ignition Behavior of Coal Char and Coal Particles Suspensions,” in Proc. of the Int. Symp. on Hazards, Prevention and Mitigation of Industrial Explosions, Bergen, Norway, June 23–26, 1996, pp. 3.1–3.10.Google Scholar
  3. 3.
    M. A. Nettleton and R. Stirling, “The Ignition of Clouds of Particles in Shock-Heated Oxygen,” Proc. Roy. Soc. A300, 62–77 (1968).ADSGoogle Scholar
  4. 4.
    V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, “Effect of Volatiles on Ignition Delay in Coal Dust Suspensions within ShockWaves,” Fiz. Goreniya Vzryva 27 (2), 101–111 (1991) [Combust., Expl., Shock Waves 27 (2), 231–236 (1991)].Google Scholar
  5. 5.
    V. V. Leshchevich, O. G. Penyaz’kov, and S. Yu. Shimchenko, “Ignition of the Methane–Air in the Presence of Coal Dust at Temperatures of 800–1200 K,” Gorenie Vzryv 9 (3), 29–35 (2016).Google Scholar
  6. 6.
    A. A. Vasil’ev, A. V. Pinaev, A. A. Trubitsyn, et al., “What is Burning in Coal Mines: Methane or Coal Dust?” Fiz. Goreniya Vzryva 53 (1), 11–18 (2017) [Combust., Expl., Shock Waves 53 (1), 8–14 (2017)].Google Scholar
  7. 7.
    D. A. Tropin and A. V. Fedorov, “Physicomathematical Modeling of Detonation Suppression by Inert Particles in Methane–Oxygen and Methane–Hydrogen–Oxygen Mixtures,” Fiz. Goreniya Vzryva 50 (5), 48–52 (2014) [Combust., Expl., Shock Waves 50 (5), 542–546 (2014)].Google Scholar
  8. 8.
    R. H. Essenhigh, M. K. Misra, and D. W. Shaw, “Ignition of Coal Particles: A Review,” Combust. Flame 77, 3–30 (1989).CrossRefGoogle Scholar
  9. 9.
    T. F. Wall and V. S. Gururajan, “Combustion Kinetics and the Heterogeneous Ignition of Pulverized Coal,” Combust. Flame 66, 151–157 (1986).CrossRefGoogle Scholar
  10. 10.
    K. Annamalai, “Critical Regimes of Coal Ignition,” J. Eng. Power 101, 576–583 (1979).CrossRefGoogle Scholar
  11. 11.
    P. A. Libby and T. R. Blake, “Theoretical Study of Buming Carbon Particles,” Combust. Flame 36, 139–169 (1979).CrossRefGoogle Scholar
  12. 12.
    F. J. Higuera and A. Linan, “Heterogeneous Ignition of Coal Dust Clouds,” Combust. Flame 75, 325–342 (1989).CrossRefGoogle Scholar
  13. 13.
    Yu. A. Gosteev and A. V. Fedorov, “Ignition of the Gas–Coal Gas Mixture. Pointwise Approximation,” Fiz. Goreniya Vzryva 37 (6), 36–45 (2001) [Combust., Expl., Shock Waves 37 (6), 646–654 (2001)].Google Scholar
  14. 14.
    Yu. A. Gosteev and A. V. Fedorov, “Mathematical Simulation of Lifting and Ignition of Particles in Coal Deposits,” Fiz. Goreniya Vzryva 39 (2), 67–74 (2003) [Combust., Expl., Shock Waves 39 (2), 177–184 (2003)].Google Scholar
  15. 15.
    L. K. Martens, Technical Encyclopedia, Vol. 4 (Kniga po Trebovaniyu, Moscow, 2011) [in Russian].Google Scholar
  16. 16.
    A. V. Fedorov, V. M. Fomin, and Yu. A. Gosteev, Dynamics and Ignition of Gas Suspensions (Izd. Novosib. Gos. Tekh. Univ., Novosibirsk, 2006) [in Russian].Google Scholar
  17. 17.
    I. L. Knunyants, Brief Chemical Encyclopedia, Vol. 5 (Kniga po Trebovaniyu, Moscow, 2013) [in Russian].Google Scholar
  18. 18.
    Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Mathematical Modeling of Ignition in Dusty Gases,” Arch. Combust. 7 (1/2), 7–17 (1987).Google Scholar
  19. 19.
    A. V. Fedorov and T. A. Khmel’, “Mathematical Simulation of Detonation Processes in a Coal–Particle Suspension,” Fiz. Goreniya Vzryva 38 (6), 103–112 (2002) [Combust., Expl., Shock Waves 38 (6), 700–708 (2002)].Google Scholar
  20. 20.
    NIST Chemistry WebBook, http://webbook.nist.gov/.
  21. 21.
    C. K. Westbrook and P. A. Urtiew, “Use of Chemical Kinetics to Predict Critical Parameters of Gaseous Detonations,” Fiz. Goreniya Vzryva 19 (6), 65–76 (1983) [Comb., Expl., Shock Waves 19 (6), 752–767 (1983)].Google Scholar
  22. 22.
    D. A. Tropin, A. V. Fedorov, O. G. Penyazkov, and V. V. Leshchevich, “Ignition Delay Time in a Methane–Air Mixture in the Presence of Iron Particles,” Fiz. Goreniya Vzryva 50 (6), 11–20 (2014) [Combust., Expl., Shock Waves 50 (6), p632–640 (2014)].Google Scholar
  23. 23.
    A. V. Fedorov and D. A. Tropin, “Mathematical Model of Magnesium Ignition in an Extended Range of Parameters,” Fiz. Goreniya Vzryva 44 (5), 64–71 (2008) [Combust., Expl., Shock Waves 44 (5), p552–559 (2008)].Google Scholar
  24. 24.
    D. A. Tropin and A. V. Fedorov, “Calculation of Flammability Limits of Silane–Oxygen and Silane–Air Mixtures,” Fiz. Goreniya Vzryva 52 (1), 46–51 (2016) [Combust., Expl., Shock Waves 52 (1), 40–44 (2014)].Google Scholar
  25. 25.
    A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Mathematical Analysis of Detonation Suppression by Inert Particles (Kao Tech Publ., Kaohsiung, 2012).Google Scholar
  26. 26.
    A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Physicomathematical Modeling of Detonation Suppression by Clouds of Fine Particles (Novosibirsk State Univ. of Arch. and Civil Eng., Novosibirsk, 2011) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations