Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 649–653 | Cite as

Strongly Nonequilibrium Model of Thermal Ignition with Account for Space–Time Nonlocality

  • V. A. Kudinov
  • A. V. Eremin
  • I. V. Kudinov
  • V. V. Zhukov
Article
  • 1 Downloads

Abstract

A modified Fourier law with account for heat flux relaxation and scalar value of the temperature gradient serves as a basis for the mathematical model of the locally nonequilibrium process of thermal ignition of systems with a hear source exponentially changing due to temperature. It is shown by the studies performed under the boundary conditions of the first kind that accounting for the space–time nonlocality increases the time delay of thermal ignition. Moreover, it is shown that, when the relaxation properties of the material are considered, the boundary conditions can only be accepted after a certain time rather than instantaneously. Consequently, the amount of heat fed to the system has a limit that depends on the physical properties (including relaxation properties) of the medium.

Keywords

locally nonequilibrium heat transfer relaxation time nonlinear heat source thermal ignition thermal ignition time delay numerical solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1967; Plenum, New York, 1969).Google Scholar
  2. 2.
    A. G. Merzhanov and F. I. Dubovitskii, “Present State of the Theory of Thermal Explosions,” Usp. Khim. 35 (4), 656–682 (1966) [Russian Chem. Rev. 35 (4), 278–292 (1966)].CrossRefGoogle Scholar
  3. 3.
    V. N. Vilyunov, Theory of Ignition of Condensed Materials (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  4. 4.
    V. A. Kudinov and I. V. Kudinov, “Studying Heat Conduction Taking into Account the Finite Rate of Heat Propagation,” Teplofiz. Vys. Temp. 51 (2), 301–310 (2013) [High Temp. 51 (2), 268–276 (2013)].Google Scholar
  5. 5.
    S. L. Sobolev, “Transport Processes and Traveling Waves in Systems with Local Nonequilibrium,” Usp. Fiz. Nauk 161 (3), 5–29 (1991) [Phys. Usp. 34 (3), 217–229 (1991)].CrossRefGoogle Scholar
  6. 6.
    S. L. Sobolev, “Local Non-Equilibrium Transport Models,” Usp. Fiz. Nauk 167 (10), 1096–1106 (1997) [Phys. Usp. 40 (10), 1043–1053 (1997)].CrossRefGoogle Scholar
  7. 7.
    D. Jou, G. Lebon, and J. Casas-Vázquez, Extended Irreversible Thermodynamics (Springer-Verlag, Berlin–Heidelberg, 2001).CrossRefzbMATHGoogle Scholar
  8. 8.
    S. L. Sobolev, “Nonlocal Diffusion Models: Application to Rapid Solidification of Binary Mixtures,” Int. J. Heat Mass Transfer 71 295–302 (2014).CrossRefGoogle Scholar
  9. 9.
    W. A. Day, The Thermodynamics of Simple Materials with Fading Memory (Springer-Verlag, Berlin–Heidelberg, 1972).CrossRefzbMATHGoogle Scholar
  10. 10.
    N. Petrov and Y. Brankov, Modern Problems in Thermodynamics (Mir, Moscow, 1986) [Russian translation].Google Scholar
  11. 11.
    V. A. Bubnov, “Remarks on Wave Solutions of the Nonlinear Heat-Conduction Equation,” Inzh.-Fiz. Zh. 28, 670–676 (1975) [J. Eng. Phys. 40 (5), 565–571 (1981)].Google Scholar
  12. 12.
    A. V. Eremin, V. A. Kudinov, and I. V. Kudinov, “Mathematical Model of Heat Transfer in a Fluid with Account for its Relaxation Properties,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 51 (1), 33–44 (2016) [Fluid Dyn. 51 (1), 33–44 (2016)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. A. Kudinov, and I. V. Kudinov, “Obtaining Exact Analytical Solutions of Hyperbolic Equations of Motion in an Acceleration Couette Flow,” Izv. Ross. Akad Nauk, Energetika, No. 1, 119–133 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Kudinov
    • 1
  • A. V. Eremin
    • 1
  • I. V. Kudinov
    • 1
  • V. V. Zhukov
    • 1
  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations