Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 642–648 | Cite as

HCHO PLIF Investigation of the Flame Shape in an Unsteady Swirling Jet Flow

  • A. S. Lobasov
  • S. S. Abdurakipov
  • L. M. Chikishev
  • V. M. Dulin
  • D. M. Markovich
Article
  • 10 Downloads

Abstract

This paper describes an experimental study of the spatial structure of the chemical reaction zone in turbulent swirling flames by planar laser-induced fluorescence of formaldehyde (HCHO). Combustion of the methane–air mixture at atmospheric pressure is considered for different values of the equivalence ratio φ: inverted cone flames for φ = 0.7 and 1.4 and lifted flames for φ = 2.5. Apart from small-scale deformations, the change in the chemical reaction zone shape is associated with two types of large-scale coherent structures, namely, an almost axisymmetric deformation mode, which appears to be due to the buoyancy effect on the combustion products, and rotation of an asymmetric mode due to the precession of the swirling flow.

Keywords

turbulent swirling flame coherent structures planar laser-induced fluorescence formaldehyde fluorescence principal component analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows (Abacus Press, Kent, 1984).Google Scholar
  2. 2.
    Sh. A. Piralishvili, V. M. Polyaev, and M. N. Sergeev, Vortex Effect. Experiment, Theory, and Engineering Solutions (Energomash, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Introduction into the Theory of Concentrated Vortices (Kutateladze Inst. of Thermophysics, SB RAS, Novosibirsk, 2003) [in Russian].zbMATHGoogle Scholar
  4. 4.
    O. V. Mitrofanova, “Hydrodynamics and Heat Transfer in Swirling Flows in Channels with Swirlers (Analytical Review),” Teplofiz. Vysok. Temp. 41 (4), 587–633 (2003) [High Temp. 41 (4), 518–559 (2003)].MathSciNetGoogle Scholar
  5. 5.
    A. Y. Varaksin, “Concentrated Air and Fire Vortices: Physical Modeling (A Review),” Teplofiz. Vysok. Temp. 54 (3), 430–452 (2016) [High Temp. 54 (3), 409–427 (2016)].Google Scholar
  6. 6.
    C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Coherent Structures in Unsteady Swirling Jet Flow,” Exp. Fluids 40 (2), 267–276 (2006).CrossRefGoogle Scholar
  7. 7.
    K. Oberleithner, M. Sieber, N. Nayeri, and C. O. Paschereit, “Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction,” J. Fluid Mech. 679, 383–414 (2011).ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    S. V. Alekseenko, V. M. Dulin, Y. S. Kozorezov, and D. M. Markovich, “Effect of High-Amplitude Forcing on Turbulent Combustion Intensity and Vortex Core Precession in a Strongly Swirling Lifted Propane/Air Flame,” Combust. Sci. Technol. 184 (10/11), 1862–1890 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Yu. Krasheninnikov, A. K. Mironov, D. E. Pudovikov, and P. D. Toktaliev, “Investigation of the Generation of Sound Waves Produced by Turbulent Jets,” Izv. Ross. Akad. Nauk, Mekh. Zhid. Gaza 50 (3), 68–86 (2015) [Fluid Dyn. 50 (3), 371–386 (2015)].zbMATHGoogle Scholar
  10. 10.
    I.V. Litvinov, D.K. Sharaborin, and S.I. Shtork, “Finding of Parameters of Helical Symmetry for Unsteady Vortex Flow Based on Phase-Averaged PIV Measurement Data,” Teplofiz. Aeromekh. 22 (5), 673–677 (2015) [Thermophys. Aeromech. 22 (5), 647–650 (2015)].Google Scholar
  11. 11.
    N. A. Syred, “Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems,” Progr. Energy Combust. Sci. 32 (2), 93–161 (2006).CrossRefGoogle Scholar
  12. 12.
    T. C. Lieuwen, Unsteady Combustor Physics (Cambridge Univ. Press, 2012).CrossRefzbMATHGoogle Scholar
  13. 13.
    M. Stöhr, R. Sadanandan, and W. Meier, “Phase-Resolved Characterization of Vortex–Flame Interaction in a Turbulent Swirl Flame,” Exp. Fluids 51 (4), 1153–1167 (2011).CrossRefGoogle Scholar
  14. 14.
    I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Temporally Resolved Planar Measurements of Transient Phenomena in a Partially Pre-Mixed Swirl Flame in a Gas Turbine Model Combustor,” Combust. Flame 157 (6), 1510–1525 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Sirovich, “Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures,” Quart. Appl. Math. 45 (3), 561–571 (1987).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    I. Glassman, Combustion (Academic Press, San Diego, 1996).Google Scholar
  17. 17.
    C. Brackmann, J. Nygren, X. Bai, et al., “Laser-Induced Fluorescence of Formaldehyde in Combustion Using Third Harmonic Nd:YAG Laser Excitation,” Spectrochim. Acta. A 59 (14), 3347–3356 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    J. E. Harrington and K. C. Smyth, “Laser-Induced Fluorescence Measurements of Formaldehyde in Methane/Air Diffusion Flame,” Chem. Phys. Lett. 202 (3/4), 196–202 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    C. Brackmann, Z. Li, M. Rupinski, N. Docquier, et al., “Strategies for Formaldehyde Detection in Flames an Engines Using a Single-Mode Nd:YAG/OPO Laser System,” Appl. Spectrosc. 59 (6), 763–768 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    D. M. Markovich, S. S. Abdurakipov, L. M. Chikishev, et al., “Comparative Analysis of Low-and High-Swirl Confined Flames and Jets by Proper Orthogonal and Dynamic Mode Decompositions,” Phys. Fluids 24 (6), 065109 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    G. Kerschen, J. C. Golinval, A. F. Vakakis, and L. A. Bergman, “The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview,” Nonlin. Dyn. 41 (1), 147–169 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    S. S. Abdurakipov, V. M. Dulin, D. M. Markovich, and K. Hanjalic, “Determining Instability Modes in a Gas Flame,” Tech. Phys. Lett. 39, 308–311 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Lobasov
    • 1
    • 2
  • S. S. Abdurakipov
    • 1
    • 2
  • L. M. Chikishev
    • 1
    • 2
  • V. M. Dulin
    • 1
    • 2
  • D. M. Markovich
    • 1
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations