Combustion, Explosion, and Shock Waves

, Volume 53, Issue 6, pp 678–688 | Cite as

Experimental study of the suppression of flaming combustion and thermal decomposition of model ground and crown forest fires

  • R. S. Volkov
  • G. V. Kuznetsov
  • P. A. Strizhak


This paper presents an experimental study of heat and mass transfer and phase transformations in the suppression of flaming combustion and thermal decomposition of model ground, crown, and mixed forest fires due to local exposure to water. The experiments were carried out with typical combustible forest materials (mixture of leaves, needles, and twigs) and models of trunks and branches of trees. The conditions and characteristics of suppression of the flaming combustion and thermal decomposition of combustible forest materials were determined. It is shown that in the case of crown and mixed fires, local short-term (a few seconds) action of a liquid projectile does not suppress the thermal decomposition of the material (but can only lead to localization of flaming combustion). In the case of ground forest fires, this approach can be efficient with an appropriate choice of the water-irrigated area of the combustion zone and the rate and time of water spraying.


combustible forest material flaming combustion thermal decomposition suppression of combustion water projectile aerosol water droplet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Merino, F. Caballero, J. R. Mart´inez-De-Dios, and I. Maza, and A. Ollero, “An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement,” J. Intell. Robot. Syst.: Theor. Appl. 65 (1–4), 533–548 (2012).CrossRefGoogle Scholar
  2. 2.
    E. A. Moskvilin, “Use of Aircraft for Fighting Forest Fires,” Pozhar. Bezopasnost’, No. 1, 89–92 (2009).Google Scholar
  3. 3.
    N. P. Kopylov, I. R. Khasanov, A. E. Kuznetsov, D. V. Fedotkin, E. A. Moskvilin, P. A. Strizhak, and V. N. Karpov, “Parameters ofWater Discharge by Aeronautical Means for Extinguishing Forest Fires,” Pozhar. Bezopasnost’, No. 2, 49–55 (2015).Google Scholar
  4. 4.
    M. P. Thompson, D. E. Calkin, J. Herynk, C. W. McHugh, and K. C. Short, “Airtankers and Wildfire Management in the US Forest Service: Examining Data Availability and Exploring Usage and Cost Trends,” Int. J. Wildland Fire 22 (2), 223–233 (2012).CrossRefGoogle Scholar
  5. 5.
    D. E. Calkin, C. S. Stonesifer, M. P. Thompson, and C. W. McHugh, “Large Airtanker use and Outcomes in Suppressing Wildland Fires in the United States,” Int. J. Wildland Fire 23 (2), 259–271 (2014).CrossRefGoogle Scholar
  6. 6.
    M. B. Gonchikzhapov, A. A. Paletskii, and O. P. Korobeinichev, “Pyrolysis Kinetics of Combustible Forest Materials in an Inert/Oxidizing Medium at High and Low Heating Rates,” Sibbezzopasnost-Spassib, No. 1, 38–44 (2012).Google Scholar
  7. 7.
    A. N. Subbotin, “Mathematical Model for the Spread of a Ground Forest Fire on Litter or a Pine Needle Layer,” Pozhar. Bezopasnost’, No. 1, 109–116 (2008).Google Scholar
  8. 8.
    R. M. Aseeva, B. B. Serkov, and A. B. Sivenkov, “Burning and Fire Hazard of Wood,” Pozharovzryvobezopasnost’ 21 (1), 19–32 (2012).Google Scholar
  9. 9.
    O. V. Vysokomornaya, G. V. Kuznetsov, P. A. Strizhak, “Experimental Investigation of AtomizedWater Droplet Initial Parameters Influence on Evaporation Intensity in Flaming Combustion,” Fire Saf. J. 70, 61–70 (2014).CrossRefGoogle Scholar
  10. 10.
    O. P. Korobeinichev, A. G. Shmakov, A. A. Chernov, T. A. Bol’shova, V. M. Shvartsberg, K. P. Kutsenogii, and V. I. Makarov, “Fire Suppression by Aerosols of Aqueous Solutions of Salts,” Fiz. Goreniya Vzryva 46 (1), 20–25 (2010) [Combust., Expl., ShockWaves 46 (1), 16–20 (2010)].Google Scholar
  11. 11.
    A. Yu. Snegirev and A. S. Tsoy, “Treatment of Local Extinction in CFD Fire Modeling,” Proc. of the Combust. Inst. 35 (3), 2519–2526 (2015).CrossRefGoogle Scholar
  12. 12.
    O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov, “Fire Suppression by Low-Volatile Chemically Active Fire Suppressants using Aerosol Technology,” Fire Saf. J. 51, 102–109 (2012).CrossRefGoogle Scholar
  13. 13.
    R. S. Volkov, M. V. Zabelin, G. V. Kuznetsov, and P. A. Strizhak, “Features of Transformation of Water Projectiles Moving through High-Temperature Combustion Products,” Tech. Phys. Lett. 42 (3), 256–259 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. Dimitrakopoulos, C. Gogi, G. Stamatelos, and I. Mitsopoulos, “Statistical Analysis of the Fire Environment of Large Forest Fires (>1000 ha) in Greece,” Polish J. Environ. Studies. 20, 327–332 (2011).Google Scholar
  15. 15.
    F. X. Catry, F. C. Rego, F. Moreira, and F. Bacao, “Characterizing and Modelling the Spatial Patterns of Wildfire Ignitions in Portugal: Fire Initiation and Resulting Burned Area,” in 1st Int. Conf. on Modelling, Monitoring and Management of Forest Fires (WITpress, 2008), pp. 213–221 (WIT Trans. on Ecology and the Environnment; Vol. 119).CrossRefGoogle Scholar
  16. 16.
    D. H. Klyde, D. J. Alvarez, P. C. Schulze, T. H. Cox, and M. Dickerson, “Limited Handling Qualities Assessment of Very Large Aerial Tankers for the Wildfire Suppression Mission,” in AIAA Atmospheric Flight Mech. Conf. 2010.Google Scholar
  17. 17.
    L. I. Sedov, Similarity and Dimensional Analysis (Nauka, Moscow, 1977; Academic Press, New York, 1959).Google Scholar
  18. 18.
    N. V. Baranovskii and G. V. Kuznetsov, Prediction of Forest Fires and Their Environmental Impacts (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2009) [in Russian].Google Scholar
  19. 19.
    G. A. Dorrer, Mathematical Models of the Dynamics of Forest Fires (Lesnaya Promyshlennost’, Moscow, 1979 [in Russian].Google Scholar
  20. 20.
    E. V. Konev, Physical Fundamentals of the Combustion of Plant Materials (Nauka, Novosibirsk, 1977 [in Russian].Google Scholar
  21. 21.
    Russian State Standard (GOST) No. R 51057-2001, Fire Fighting Equipment. Portable Fire Extinguishers. General Technical Requirements. Test Methods (2001).Google Scholar
  22. 22.
    R. S. Volkov, M. V. Zabelin, G. V. Kuznetsov, and P. A. Strizhak, “Transformation of a Free-Falling Water Projectile Exposed Orthogonal Air Flow,” Inzh.-Fiz. Zh. 89 (4), 861–867 (2016).Google Scholar
  23. 23.
    A. M. Grishin, Mathematical Models of Forest Fires (Tomsk State University, Tomsk, 1981) [in Russian].Google Scholar
  24. 24.
    A. N. Subbotin, “Mathematical Model for the Spread of a Ground Forest Fire on Pine Needle Litter,” Pozhar. Bezopasnost’, No. 1, 109–116 (2008).Google Scholar
  25. 25.
    J. Westerweel, “Fundamentals of Digital Particle Image Velocimetry,” Measur. Sci. Technol. 8, 1379–1392 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser Marked Shadowgraphy: A Novel Optical Planar Technique for the Study of Microbubbles and Droplets,” Exp. Fluids 47 (2), 333–341 (2009).CrossRefGoogle Scholar
  27. 27.
    R. S. Volkov and P. A. Strizhak, “The Integral Characteristics of the Deceleration and Entrainment of Water Droplets by the Counter Flow of High-Temperature Combustion Products,” Exp. Therm. Fluid Sci. 75, 54–65 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. S. Volkov
    • 1
  • G. V. Kuznetsov
    • 1
  • P. A. Strizhak
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations