Advertisement

Combustion, Explosion, and Shock Waves

, Volume 53, Issue 6, pp 634–640 | Cite as

Performance optimization of a standard-flow hybrid rocket engine

  • V. A. Arkhipov
  • S. S. Bondarchuk
  • A. S. Zhukov
  • N. N. Zolotorev
  • K. G. Perfil’eva
Article
  • 56 Downloads

Abstract

A method for performance optimization of a standard-flow hybrid rocket engine is considered. The method is based on inserting an additional amount of an oxidizer into a solid propellant with a prescribed distribution of the oxidizer mass fraction along the solid propellant charge. An analytical dependence is derived for the oxidizer fraction distribution that ensures uniform combustion and high efficiency of the solid propellant charge.

Keywords

hybrid rocket engine solid propellant charge additional oxidizer burning rate combustion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Golovkov, Hybrid Rocket Engines (Voenizdat, Moscow, 1976) [in Russian].Google Scholar
  2. 2.
    http://www.astronautix.com/lvs/gird 09.htm.Google Scholar
  3. 3.
    “Hybrid Rocket Engines (Review),” in Issues of Rocket Engineering (translations and reviews of foreign periodicals), No. 10/130 (Mir, Moscow, 1965), pp. 30–40.Google Scholar
  4. 4.
    “Investigations and Development of Hybrid Rocket Engines (Review),” in Issues of Rocket Engineering: Theory and Practice of Foreign Rocket Engineering, No. 6/222 (Mir, Moscow, 1973), pp. 23–49.Google Scholar
  5. 5.
    https://ru.wikipedia.org/wiki/SpaceSheepTwo.Google Scholar
  6. 6.
    M. J. Chiaverini, K. K. Kuo, A. Peretz, et al., “Regression-Rate and Heat-Transfer Correlations for Hybrid Rocket Combustion,” J. Propul. Power 17 (1), 99–110 (2001).CrossRefGoogle Scholar
  7. 7.
    M. A. Karabeyoglu, D. Altman, and B. J. Cantwell, “Combustion of Liquefying Hybrid Propellants: Part 1. General Theory,” J. Propul. Power 18 (3), 610–620 (2002).CrossRefGoogle Scholar
  8. 8.
    M. A. Karabeyoglu, G. Zilliac, B. J. Cantwell, et al., “Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels,” J. Propul. Power 20 (6), 1037–1045 (2004).CrossRefGoogle Scholar
  9. 9.
    N. A. Davydenko, R. G. Gollender, A. M. Gubertov, et al., “Hybrid Rocket Engines: The Benefits and Prospects,” Aerosp. Sci. Technol. 11, 55–60 (2007).CrossRefGoogle Scholar
  10. 10.
    C. Carmicino and A. R. Sorge, “Performance Comparison between Two Different Injector Configurations in a Hybrid Rocket,” Aerosp. Sci. Technol. 11, 61–67 (2007).CrossRefGoogle Scholar
  11. 11.
    A. M. Gubertov, V. V. Mironov, R. G. Gollender, et al., Processes in Hybrid Rocket Engines (Nauka, Moscow, 2008) [in Russian].Google Scholar
  12. 12.
    D. R. Greatrix, “Regression Rate Estimation for Standard-Flow Rocket Engines,” Aerosp. Sci. Technol. 13, 358–363 (2009).CrossRefGoogle Scholar
  13. 13.
    F. Maggi, G. Gariani, L. Galfetti, and L. T. de Luca, “Theoretical Analysis of Hydrides in Solid and Hybrid Rocket Propellants,” Int. J. Hydrogen Energy 37, 1760–1769 (2012).CrossRefGoogle Scholar
  14. 14.
    P. Tadini, C. Paravan, and L. T. de Luca, “Ballistic Characterization of Metallized HTPB-Based Fuels with Swirling Oxidizer in Lab-Scale Hybrid Burner,” in Proc. 9th Int. Conf. on High Energy Materials (HEMs-2013) (Sagamihara, Japan, 2013), pp. 1–9.Google Scholar
  15. 15.
    D. Bianchi, B. Betti, and F. Nasuti, “Simulation of Gaseous Oxygen/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Flowfields and Comparison with Experiments,” J. Propul. Power 31 (3), 919–929 (2015).CrossRefGoogle Scholar
  16. 16.
    V. A. Arkhipov, V. E. Zarko, I. K. Zharova, et al., “Solid Propellant Combustion in a High-Velocity Cross-Flow of Gases (Review),” Fiz. Goreniya Vzryva 52 (5), 3–22 (2016) [Combust., Expl., ShockWaves 52 (5), 497–513 (2016)].Google Scholar
  17. 17.
    A. M. Gubertov, V. V. Mironov, R. G. Gollender, et al., “Hybrid Rocket Engine,” RF Patent No. RU 2359145, MPK F02K 9/72, Appl. December 29, 2007, Publ. June 20, 2009, Bul. No.17.Google Scholar
  18. 18.
    R. E. Sorkin, Gasthermodynamics of Solid-Propellant Rocket Engines (Nauka, Moscow, 1967) [in Russian].Google Scholar
  19. 19.
    V. A. Arkhipov, S. S. Bondarchuk, A. B. Vorozhtsov, et al., “Hybrid Rocket Engine,” RF Patent No. RU 2569960, MPK F02K 9/72, Appl. December 09, 2014, Publ. December 10, 2015, Bul. No.34.Google Scholar
  20. 20.
    Ya. M. Paushkin, Liquid and Solid Chemical Rocket Propellants (Nauka, Moscow, 1978) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Arkhipov
    • 1
  • S. S. Bondarchuk
    • 2
  • A. S. Zhukov
    • 1
  • N. N. Zolotorev
    • 1
  • K. G. Perfil’eva
    • 1
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Institute for Problems of Chemical and Energetic Technologies, Siberian BranchRussian Academy of SciencesBiiskRussia

Personalised recommendations