Advertisement

Combustion, Explosion, and Shock Waves

, Volume 52, Issue 5, pp 535–543 | Cite as

Catalytic oxidation of methane on CuO/Al2O3/FeAlO/FeAl cermet catalysts

  • S. F. TikhovEmail author
  • Yu. N. Bespalko
  • V. A. Sadykov
  • A. N. Salanov
  • S. I. Reshetnikov
Article

Abstract

The activity of plates of CuO/Al2O3/FeAlO/FeAl structured cermet catalysts is compared by varying their alumina content. The catalysts were prepared by impregnation of cermet supports obtained by mechanochemical activation of powder mixtures of an alumina precursor [20–50% (wt.)], iron, and aluminum, followed by hydrothermal treatment and calcination. It is shown that increasing the content of the alumina precursor (product of thermal activation of gibbsite) increases the specific surface area of the support and the mesopore and macropore volumes and reduces its mechanical strength. The content of the active component (CuO) also increases, resulting in an increase in the specific activity of catalyst despite a reduction in the effectiveness of using the active component. The activity of catalysts with a moderate concentration of alumina is sufficient to initiate methane oxidation.

Keywords

catalytic oxidation of methane cermet catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Pfefferle and W. Pfefferle, “Catalysis in Combustion,” Catal. Rev. Sci. Eng. 29, 219–267 (1987).CrossRefGoogle Scholar
  2. 2.
    R. M. Heck and R. J. Farrauto, Catalytic Air Pollution Control. Commercial Technology (Van Nostrand Reinhold, New York, 1995).Google Scholar
  3. 3.
    J. Kirhnerova, “Materials for Catalytic Gas Combustion,” J. Chem. Eng. 16, 427–433 (1999).Google Scholar
  4. 4.
    J. Kirhnerova and D. Klvanna, “Design Criteria for High-Temperature Combustion Catalysts,” Catal. Lett. 67, 175–181 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Cimino, L. Lisi, R. Pirone, G. Russo, and M. Turco, “Methane Combustion on Perovskite-Based Structured Catalysts,” Catal. Today 59, 19–31 (2000).CrossRefGoogle Scholar
  6. 6.
    L. A. Isupova, E. Yu. Gerasimov, V. I. Zaikovskii, S. V. Tsybulya, N. A. Kulikovskaya, and N. F. Saputina, “Synthesis of Homogeneous La1-xCaxMnO3 Solid Solutions by the Pechini Method and Their Activity in Methane Oxidation,” Kinet. Katal. 50, 922–928 (2009).Google Scholar
  7. 7.
    G. Xanthopoulou and G. Vekinis, “Deep Oxidation of Methane using Catalysts and Supports Produced by Self-Propagating High-Temperature Synthesis,” Appl. Catal. A: General 199, 227–238 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Kaddouri, N. Dupont, G. Gélin, and P. Delich`ere, “Methane Combustion over Copper Chromites Catalysts Prepared by the Sol–Gel Process,” Catal. Lett. 141, 1581–1589 (2011).CrossRefGoogle Scholar
  9. 9.
    D. A. Arendarskii, E. A. Paukshtis, Z. R. Ismagilov, and E. N. Yurchenko, “Optical Spectroscopic Studies of CuCr2O4/Al2O3. Catalyst Deactivation under Operation in Catalytic Heat Generators,” React. Kinet. Catal. Lett. 28, 195–201 (1985).CrossRefGoogle Scholar
  10. 10.
    D. A. Arendarskii, A. V. Pashis, A. P. Shepelin, and Z. R. Ismagilov, “XPS Studies of Cu–Cr Catalyst Deactivation in Catalytic Heat Generators,” React. Kinet. Catal. Lett. 28, 211–217 (1985).CrossRefGoogle Scholar
  11. 11.
    S. F. Tikhov, V. V. Usoltsev, V. A. Sadykov, S. N. Pavlova, O. I. Snegurenko, L. L. Gogin, Z. Yu. Vostrikov, A. N. Salanov, S. V. Tsybulya, G. S. Litvak, G. V. Golubkova, and O. I. Lomovskii, “CrAl Alloy-Based Monolith with Polymodal Pore Structure for Partial Oxidation of Methane to Synthesis-Gas,” Stud. Surf. Sci. Catal. 162, 641–648 (2006).CrossRefGoogle Scholar
  12. 12.
    S. F. Tikhov, A. D. Simonov, N. A. Yazykov, Yu. V. Dubinin, V. A. Yakovlev, V. A. Sadykov, A. N. Salanov, and E. A. Suprun, “Catalytic Combustion of Brown Coal Particulates over Ceramometal Honeycomb Catalyst,” Catal. Sustain. Energy 1, 82–89 (2012).Google Scholar
  13. 13.
    V. Basu, Combustion and Gasification in Fluidized Beds (CRC Tailor and Francis Group, Boca Raton, 2006).CrossRefGoogle Scholar
  14. 14.
    B. P. Zolotovskii, R. A. Buyanov, G. F. Bukhtiyarova, E. A. Taraban, V. I. Murin, V. R. Grunval’d, and R. A. Saifullin, “Development and Production of Spherical Alumina Supports, Adsorbents, and Catalysts,” Zh. Prikl. Khim. 70, 299–306 (1997).Google Scholar
  15. 15.
    JCPDS (Int. Center for Diffraction Data, 1997), Vol. 1.30.Google Scholar
  16. 16.
    S. V. Tsybulya, S. V. Cherepanova, and L. P. Solovyova, “Polycrystal Software Package for IBM/PC,” J. Struct. Chem. 37, 332–334 (1996).CrossRefGoogle Scholar
  17. 17.
    V. V. Popovskii, V. A. Sazonov, G. K. Chermoshentseva, T. L. Panarina, and L. F. Eliseeva, “Comparative Tests of Catalysts in Deep Oxidation Reactions,” in Catalytic Purification of Gases. Pt. 2 (Inst. of Catalysis, SB RAS, Novosibirsk, 1981), pp. 80–92 [in Russian].Google Scholar
  18. 18.
    Z. R. Ismagilov, M. N. Shepeleva, R. A. Shkrabina, and V. B. Fenelonov, “Interrelation between Structural and Mechanical Characteristics of Spherical Alumina Granulesand their Initial Hydroxide Properties,” Appl. Catal. 69, 65–73 (1991).CrossRefGoogle Scholar
  19. 19.
    N. A. Yazykov, A. D. Simonov, T. I. Mishenko, A. S. Aflyatunov, S. V. Smolin, and V. N. Parmon, “Fuel Combustion in the Fluidized Bed of an Inert Material Equipped with an Unmovable Catalytic Small-Volume Package,” Chem. Sustain. Develop. 11 (1), 321–326 (2003).Google Scholar
  20. 20.
    L. T. Tsikoza, D. V. Tarasova, S. V. Ketchik, N. G.Maksimov, and V. V. Popovskii, “Physiochemical and Catalytic Properties of Copper–Aluminum Oxide Catalysts,” Kinet. Katal. 22, 1300–1306 (1981).Google Scholar
  21. 21.
    J. C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley and Sons, New York, 2003).CrossRefzbMATHGoogle Scholar
  22. 22.
    I. Cerry, G. Saracco, and V. Specchia, “Methane Combustion over Low-Emission Catalytic Foam Burners,” Catal. Today 60, 21–32 (2000).CrossRefGoogle Scholar
  23. 23.
    S. F. Tikhov, V. A. Sadykov, G. N. Kryukova, E. A. Paukshtis, V. V. Popovskii, T. G.Starostina, G. V. Kharlamov, V. F. Anufrienko, V. F. Poluboyarov, V. A. Razdobarov, N. N. Bulgakov, and A. V. Kalinkin, “Microstructural and Spectroscopic Investigations of the Supported Copper–Alumina Oxide System: Nature of Aging in Oxidizing Reaction Support,” J. Catal. 134, 506–524 (1992).CrossRefGoogle Scholar
  24. 24.
    M. Manzoli, R. Di Monte, F. Boccuzzi, S. Coluccia, and J. Kaspar, “CO Oxidation over CuOx–CeO2–ZrO2 Catalysts: Transient Behavior and Role of Copper Clusters in Contact with Ceria,” Appl. Catal. B: Environmental 61, 192–205 (2005).CrossRefGoogle Scholar
  25. 25.
    V. V. Popovskii, “Oxidation of Substance on Solid Oxide Catalysts,” Kinet. Katal. 13, 1190–1203 (1972).Google Scholar
  26. 26.
    G. Pecchi, P. Reyes, R. Zamora, L. E. Cadus, and B. P. Barbero, “Catalytic Combustion of Methane over LaFeO3 Perovskites: The Influence of Coprecipitation pH and Ageing Time,” J. Chilean Chem. Soc. 51 (4), 1001–1005 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. F. Tikhov
    • 1
    Email author
  • Yu. N. Bespalko
    • 1
  • V. A. Sadykov
    • 1
    • 2
  • A. N. Salanov
    • 1
  • S. I. Reshetnikov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations